47 research outputs found
A Minimum Column Density of 1 g cm^-2 for Massive Star Formation
Massive stars are very rare, but their extreme luminosities make them both
the only type of young star we can observe in distant galaxies and the dominant
energy sources in the universe today. They form rarely because efficient
radiative cooling keeps most star-forming gas clouds close to isothermal as
they collapse, and this favors fragmentation into stars <~1 Msun. Heating of a
cloud by accreting low-mass stars within it can prevent fragmentation and allow
formation of massive stars, but what properties a cloud must have to form
massive stars, and thus where massive stars form in a galaxy, has not yet been
determined. Here we show that only clouds with column densities >~ 1 g cm^-2
can avoid fragmentation and form massive stars. This threshold, and the
environmental variation of the stellar initial mass function (IMF) that it
implies, naturally explain the characteristic column densities of massive star
clusters and the difference between the radial profiles of Halpha and UV
emission in galactic disks. The existence of a threshold also implies that
there should be detectable variations in the IMF with environment within the
Galaxy and in the characteristic column densities of massive star clusters
between galaxies, and that star formation rates in some galactic environments
may have been systematically underestimated.Comment: Accepted for publication in Nature; Nature manuscript style; main
text: 14 pages, 3 figures; supplementary text: 8 pages, 1 figur
Determinants of DNA yield and purity collected with buccal cell samples
Buccal cells are an important source of DNA in epidemiological studies, but little is known about factors that influence amount and purity of DNA. We assessed these factors in a self-administered buccal cell collection procedure, obtained with three cotton swabs. In 2,451 patients DNA yield and in 1,033 patients DNA purity was assessed. Total DNA yield ranged from 0.08 to 1078.0 μg (median 54.3 μg; mean 82.2 μg ± SD 92.6). The median UV 260:280 ratio, was 1.95. Samples from men yielded significantly more DNA (median 58.7 μg) than those from women (median 44.2 μg). Diuretic drug users had significantly lower purity (median 1.92) compared to other antihypertensive drug users (1.95). One technician obtained significantly lower DNA yields. Older age was associated with lower DNA purity. In conclusion, DNA yield from buccal swabs was higher in men and DNA purity was associated with age and the use of diuretics
Design of the sex hormones and physical exercise (SHAPE) study
<p>Abstract</p> <p>Background</p> <p>Physical activity has been associated with a decreased risk for breast cancer. The biological mechanismn(s) underlying the association between physical activity and breast cancer is not clear. Most prominent hypothesis is that physical activity may protect against breast cancer through reduced lifetime exposure to endogenous hormones either direct, or indirect by preventing overweight and abdominal adiposity. In order to get more insight in the causal pathway between physical activity and breast cancer risk, we designed the <it>Sex Hormones and Physical Exercise (SHAPE) </it>study. Purpose of SHAPE study is to examine the effects of a 1-year moderate-to-vigorous intensity exercise programme on endogenous hormone levels associated with breast cancer among sedentary postmenopausal women and whether the amount of total body fat or abdominal fat mediates the effects.</p> <p>Methods/Design</p> <p>In the SHAPE study, 189 sedentary postmenopausal women, aged 50–69 years, are randomly allocated to an intervention or a control group. The intervention consists of an 1-year moderate-to-vigorous intensity aerobic and strenght training exercise programme. Partcipants allocated to the control group are requested to retain their habitual exercise pattern. Primary study parameters measured at baseline, at four months and at 12 months are: serum concentrations of endogenous estrogens, endogenous androgens, sex hormone binding globuline and insuline. Other study parameters include: amount of total and abdominal fat, weight, BMI, body fat distribution, physical fitness, blood pressure and lifestyle factors.</p> <p>Discussion</p> <p>This study will contribute to the body of evidence relating physical activity and breast cancer risk and will provide insight into possible mechanisms through which physical activity might be associated with reduced risk of breast cancer in postmenopausal women.</p> <p>Trial registration</p> <p>NCT00359060</p
SNP-SNP interactions in breast cancer susceptibility
BACKGROUND: Breast cancer predisposition genes identified to date (e.g., BRCA1 and BRCA2) are responsible for less than 5% of all breast cancer cases. Many studies have shown that the cancer risks associated with individual commonly occurring single nucleotide polymorphisms (SNPs) are incremental. However, polygenic models suggest that multiple commonly occurring low to modestly penetrant SNPs of cancer related genes might have a greater effect on a disease when considered in combination. METHODS: In an attempt to identify the breast cancer risk conferred by SNP interactions, we have studied 19 SNPs from genes involved in major cancer related pathways. All SNPs were genotyped by TaqMan 5'nuclease assay. The association between the case-control status and each individual SNP, measured by the odds ratio and its corresponding 95% confidence interval, was estimated using unconditional logistic regression models. At the second stage, two-way interactions were investigated using multivariate logistic models. The robustness of the interactions, which were observed among SNPs with stronger functional evidence, was assessed using a bootstrap approach, and correction for multiple testing based on the false discovery rate (FDR) principle. RESULTS: None of these SNPs contributed to breast cancer risk individually. However, we have demonstrated evidence for gene-gene (SNP-SNP) interaction among these SNPs, which were associated with increased breast cancer risk. Our study suggests cross talk between the SNPs of the DNA repair and immune system (XPD-[Lys751Gln] and IL10-[G(-1082)A]), cell cycle and estrogen metabolism (CCND1-[Pro241Pro] and COMT-[Met108/158Val]), cell cycle and DNA repair (BARD1-[Pro24Ser] and XPD-[Lys751Gln]), and within carcinogen metabolism (GSTP1-[Ile105Val] and COMT-[Met108/158Val]) pathways. CONCLUSION: The importance of these pathways and their communication in breast cancer predisposition has been emphasized previously, but their biological interactions through SNPs have not been described. The strategy used here has the potential to identify complex biological links among breast cancer genes and processes. This will provide novel biological information, which will ultimately improve breast cancer risk management
Methodological issues in detecting gene-gene interactions in breast cancer susceptibility: a population-based study in Ontario
Importance of the mixed-phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: a multi-model study
We have conducted a multi-model intercomparison of cloud-water in five state-of-the-art AGCMs run for control and doubled carbon dioxide climates. The most notable feature of the differences between the control and doubled carbon dioxide climates is in the distribution of cloud-water in the mixed-phase temperature band. The difference is greatest at mid and high latitudes. We found that the amount of cloud ice in the mixed phase layer in the control climate largely determines how much the cloud-water distribution changes for the doubled carbon dioxide climate. Therefore evaluation of the cloud ice distribution by comparison with data is important for future climate sensitivity studies. Cloud ice and cloud liquid both decrease in the layer below the melting layer, but only cloud liquid increases in the mixed-phase layer. Although the decrease in cloud-water below the melting layer occurs at all latitudes, the increase in cloud liquid in the mixed-phase layer is restricted to those latitudes where there is a large amount of cloud ice in the mixed-phase layer. If the cloud ice in the mixed-phase layer is concentrated at high latitudes, doubling of carbon dioxide might shift the center of cloud water distribution poleward which could decrease solar reflection because solar insolation is less at higher latitude. The magnitude of this poleward shift of cloud water appears to be larger for the higher climate sensitivity models, and it is consistent with the associated changes in cloud albedo forcing. For the control climate there is a clear relationship between the differences in cloud-water and relative humidity between the different models, for both magnitude and distribution. On the other hand the ratio of cloud ice to cloud-water follows the threshold temperature which is determined in each model. Improved measurements of relative humidity could be used to constrain the modeled representation of cloud water. At the same time, comparative analysis in global cloud resolving model simulations is necessary for further understanding of the relationships suggested in this paper.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45864/1/382_2006_Article_127.pd
Low-mass and sub-stellar eclipsing binaries in stellar clusters
We highlight the importance of eclipsing double-line binaries in our
understanding on star formation and evolution. We review the recent discoveries
of low-mass and sub-stellar eclipsing binaries belonging to star-forming
regions, open clusters, and globular clusters identified by ground-based
surveys and space missions with high-resolution spectroscopic follow-up. These
discoveries provide benchmark systems with known distances, metallicities, and
ages to calibrate masses and radii predicted by state-of-the-art evolutionary
models to a few percent. We report their density and discuss current
limitations on the accuracy of the physical parameters. We discuss future
opportunities and highlight future guidelines to fill gaps in age and
metallicity to improve further our knowledge of low-mass stars and brown
dwarfs.Comment: 30 pages, 5 figures, no table. Review pape
