13 research outputs found

    Large-scale comparative genomic ranking of taxonomically restricted genes (TRGs) in bacterial and archaeal genomes

    Get PDF
    BACKGROUND: Lineage-specific, or taxonomically restricted genes (TRGs), especially those that are species and strain-specific, are of special interest because they are expected to play a role in defining exclusive ecological adaptations to particular niches. Despite this, they are relatively poorly studied and little understood, in large part because many are still orphans or only have homologues in very closely related isolates. This lack of homology confounds attempts to establish the likelihood that a hypothetical gene is expressed and, if so, to determine the putative function of the protein. METHODOLOGY/PRINCIPAL FINDINGS: We have developed "QIPP" ("Quality Index for Predicted Proteins"), an index that scores the "quality" of a protein based on non-homology-based criteria. QIPP can be used to assign a value between zero and one to any protein based on comparing its features to other proteins in a given genome. We have used QIPP to rank the predicted proteins in the proteomes of Bacteria and Archaea. This ranking reveals that there is a large amount of variation in QIPP scores, and identifies many high-scoring orphans as potentially "authentic" (expressed) orphans. There are significant differences in the distributions of QIPP scores between orphan and non-orphan genes for many genomes and a trend for less well-conserved genes to have lower QIPP scores. CONCLUSIONS: The implication of this work is that QIPP scores can be used to further annotate predicted proteins with information that is independent of homology. Such information can be used to prioritize candidates for further analysis. Data generated for this study can be found in the OrphanMine at http://www.genomics.ceh.ac.uk/orphan_mine

    Diet in irritable bowel syndrome

    Get PDF

    Introduction and History

    No full text

    Selection for energy efficiency drives strand-biased gene distribution in prokaryotes

    No full text
    Abstract Lagging-strand genes accumulate more deleterious mutations. Genes are thus preferably located on the leading strand, an observation known as strand-biased gene distribution (SGD). Despite of this mechanistic understanding, a satisfactory quantitative model is still lacking. Replication-transcription-collisions induce stalling of the replication machinery, expose DNA to various attacks, and are followed by error-prone repairs. We found that mutational biases in non-transcribed regions can explain ~71% of the variations in SGDs in 1,552 genomes, supporting the mutagenesis origin of SGD. Mutational biases introduce energetically cheaper nucleotides on the lagging strand, and result in more expensive protein products; consistently, the cost difference between the two strands explains ~50% of the variance in SGDs. Protein costs decrease with increasing gene expression. At similar expression levels, protein products of leading-strand genes are generally cheaper than lagging-strand genes; however, highly-expressed lagging genes are still cheaper than lowly-expressed leading genes. Selection for energy efficiency thus drives some genes to the leading strand, especially those highly expressed and essential, but certainly not all genes. Stronger mutational biases are often associated with low-GC genomes; as low-GC genes encode expensive proteins, low-GC genomes thus tend to have stronger SGDs to alleviate the stronger pressure on efficient energy usage

    Energy efficiency trade-offs drive nucleotide usage in transcribed regions

    Get PDF
    Efficient nutrient usage is a trait under universal selection. A substantial part of cellular resources is spent on making nucleotides. We thus expect preferential use of cheaper nucleotides especially in transcribed sequences, which are often amplified thousand-fold compared with genomic sequences. To test this hypothesis, we derive a mutation-selection-drift equilibrium model for nucleotide skews (strand-specific usage of ‘A' versus ‘T' and ‘G' versus ‘C'), which explains nucleotide skews across 1,550 prokaryotic genomes as a consequence of selection on efficient resource usage. Transcription-related selection generally favours the cheaper nucleotides ‘U' and ‘C' at synonymous sites. However, the information encoded in mRNA is further amplified through translation. Due to unexpected trade-offs in the codon table, cheaper nucleotides encode on average energetically more expensive amino acids. These trade-offs apply to both strand-specific nucleotide usage and GC content, causing a universal bias towards the more expensive nucleotides ‘A' and ‘G' at non-synonymous coding sites

    The social network of microorganisms — how auxotrophies shape complex communities

    No full text
    Microorganisms engage in complex interactions with other organisms and their environment. Recent studies have shown that these interactions are not limited to the exchange of electron donors. Most microorganisms are auxotrophs, thus relying on external nutrients for growth, including the exchange of amino acids and vitamins. Currently, we lack a deeper understanding of auxotrophies in microorganisms and how nutrient requirements differ between different strains and different environments. In this Opinion article, we describe how the study of auxotrophies and nutrient requirements among members of complex communities will enable new insights into community composition and assembly. Understanding this complex network over space and time is crucial for developing strategies to interrogate and shape microbial communities
    corecore