8 research outputs found
Recommended from our members
Impact of phytochemical-rich foods on bioaccessibility of mercury from fish
46-5
Targeting multiple pathogenic mechanisms with polyphenols for the treatment of Alzheimer's disease-experimental approach and therapeutic implications.
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease of aging and currently has no cure. Its onset and progression are influenced by multiple factors. There is growing consensus that successful treatment will rely on simultaneously targeting multiple pathological features of AD. Polyphenol compounds have many proven health benefits. In this study, we tested the hypothesis that combining three polyphenolic preparations (grape seed extract, resveratrol, and Concord grape juice extract), with different polyphenolic compositions and partially redundant bioactivities, may simultaneously and synergistically mitigate amyloid-β (Aβ) mediated neuropathology and cognitive impairments in a mouse model of AD. We found that administration of the polyphenols in combination did not alter the profile of bioactive polyphenol metabolites in the brain. We also found that combination treatment resulted in better protection against cognitive impairments compared to individual treatments, in J20 AD mice. Electrophysiological examination showed that acute treatment with select brain penetrating polyphenol metabolites, derived from these polyphenols, improved oligomeric Aβ (oAβ)-induced long term potentiation (LTP) deficits in hippocampal slices. Moreover, we found greatly reduced total amyloid content in the brain following combination treatment. Our studies provided experimental evidence that application of polyphenols targeting multiple disease-mechanisms may yield a greater likelihood of therapeutic efficacy
Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors
Activation of the NLRP3 inflammasome enables monocytes and macrophages to release high levels of interleukin-1β during inflammatory responses. Concentrations of extracellular calcium can increase at sites of infection, inflammation or cell activation. Here we show that increased extracellular calcium activates the NLRP3 inflammasome via stimulation of G protein-coupled calcium sensing receptors. Activation is mediated by signalling through the calcium-sensing receptor and GPRC6A via the phosphatidyl inositol/Ca(2+) pathway. The resulting increase in the intracellular calcium concentration triggers inflammasome assembly and Caspase-1 activation. We identified necrotic cells as one source for excess extracellular calcium triggering this activation. In vivo, increased calcium concentrations can amplify the inflammatory response in the mouse model of carrageenan-induced footpad swelling, and this effect was inhibited in GPRC6A(−/−) mice. Our results demonstrate that G-protein-coupled receptors can activate the inflammasome, and indicate that increased extracellular calcium has a role as a danger signal and amplifier of inflammation
Proanthocyanidins potentiate hypothalamic leptin/STAT3 signalling and Pomc gene expression in rats with diet-induced obesity
The Promise of Nutrient-Derived Bioactive Compounds and Dietary Components to Ameliorate Symptoms of Chemotherapy-Related Cognitive Impairment in Breast Cancer Survivors
Impacts on Sirtuin Function and Bioavailability of the Dietary Bioactive Compound Dihydrocoumarin
Microdialysis as a tool in local pharmacodynamics
In many cases the clinical outcome of therapy needs to be determined by the drug concentration in the tissue compartment in which the pharmacological effect occurs rather than in the plasma. Microdialysis is an in vivo technique that allows direct measurement of unbound tissue concentrations and permits monitoring of the biochemical and physiological effects of drugs throughout the body. Microdialysis was first used in pharmacodynamic research to study neurotransmission, and this remains its most common application in the field. In this review, we give an overview of the principles, techniques, and applications of microdialysis in pharmacodynamic studies of local physiological events, including measurement of endogenous substances such as acetylcholine, catecholamines, serotonin, amino acids, peptides, glucose, lactate, glycerol, and hormones. Microdialysis coupled with systemic drug administration also permits the more intensive examination of the pharmacotherapeutic effect of drugs on extracellular levels of endogenous substances in peripheral compartments and blood. Selected examples of the physiological effects and mechanisms of action of drugs are also discussed, as are the advantages and limitations of this method. It is concluded that microdialysis is a reliable technique for the measurement of local events, which makes it an attractive tool for local pharmacodynamic research
