142 research outputs found
Boundaries of Semantic Distraction: Dominance and Lexicality Act at Retrieval
Three experiments investigated memory for semantic information with the goal of determining boundary conditions for the manifestation of semantic auditory distraction. Irrelevant speech disrupted the free recall of semantic category-exemplars to an equal degree regardless of whether the speech coincided with presentation or test phases of the task (Experiment 1) and occurred regardless of whether it comprised random words or coherent sentences (Experiment 2). The effects of background speech were greater when the irrelevant speech was semantically related to the to-be-remembered material, but only when the irrelevant words were high in output dominance (Experiment 3). The implications of these findings in relation to the processing of task material and the processing of background speech is discussed
Working memory capacity modulates habituation rate: Evidence from a cross-modal auditory distraction paradigm
Habituation of the orienting response is a pivotal part of selective attention, and previous research has related working memory capacity (WMC) to attention control. Against this background, the purpose of this study was to investigate whether individual differences in WMC contribute to habituation rate. The participants categorized visual targets across six blocks of trials. Each target was preceded either by a standard sound or, on rare trials, by a deviant. The magnitude of the deviation effect (i.e., prolonged response time when the deviant was presented) was relatively large in the beginning but attenuated toward the end. There was no relationship between WMC and the deviation effect at the beginning, but there was at the end, and greater WMC was associated with greater habituation. These results indicate that high memory ability increases habituation rate, and they support theories proposing a role for cognitive control in habituation and in some forms of auditory distraction
Role of Homer Proteins in the Maintenance of Sleep-Wake States
Sleep is an evolutionarily conserved process that is linked to diurnal cycles and normal daytime wakefulness. Healthy sleep and wakefulness are integral to a healthy lifestyle; this occurs when an organism is able to maintain long bouts of both sleep and wake. Homer proteins, which function as adaptors for group 1 metabotropic glutamate receptors, have been implicated in genetic studies of sleep in both Drosophila and mouse. Drosophila express a single Homer gene product that is upregulated during sleep. By contrast, vertebrates express Homer as both constitutive and immediate early gene (H1a) forms, and H1a is up-regulated during wakefulness. Genetic deletion of Homer in Drosophila results in fragmented sleep and in failure to sustain long bouts of sleep, even under increased sleep drive. However, deletion of Homer1a in mouse results in failure to sustain long bouts of wakefulness. Further evidence for the role of Homer1a in the maintenance of wake comes from the CREB alpha delta mutant mouse, which displays a reduced wake phenotype similar to the Homer1a knockout and fails to up-regulate Homer1a upon sleep loss. Homer1a is a gene whose expression is induced by CREB. Sustained behaviors of the sleep/wake cycle are created by molecular pathways that are distinct from those for arousal or short bouts, and implicate an evolutionarily-conserved role for Homer in sustaining these behaviors
Early Release Science of the exoplanet WASP-39b with JWST NIRISS
The Saturn-mass exoplanet WASP-39b has been the subject of extensive efforts to determine its atmospheric properties using transmission spectroscopy1–4. However, these efforts have been hampered by modelling degeneracies between composition and cloud properties that are caused by limited data quality5–9. Here we present the transmission spectrum of WASP-39b obtained using the Single-Object Slitless Spectroscopy (SOSS) mode of the Near Infrared Imager and Slitless Spectrograph (NIRISS) instrument on the JWST. This spectrum spans 0.6–2.8 μm in wavelength and shows several water-absorption bands, the potassium resonance doublet and signatures of clouds. The precision and broad wavelength coverage of NIRISS/SOSS allows us to break model degeneracies between cloud properties and the atmospheric composition of WASP-39b, favouring a heavy-element enhancement (‘metallicity’) of about 10–30 times the solar value, a sub-solar carbon-to-oxygen (C/O) ratio and a solar-to-super-solar potassium-to-oxygen (K/O) ratio. The observations are also best explained by wavelength-dependent, non-grey clouds with inhomogeneous coverageof the planet’s terminator
The transiting exoplanet community early release science program for JWST
The James Webb Space Telescope (JWST) presents the opportunity to transform
our understanding of planets and the origins of life by revealing the
atmospheric compositions, structures, and dynamics of transiting exoplanets in
unprecedented detail. However, the high-precision, time-series observations
required for such investigations have unique technical challenges, and prior
experience with other facilities indicates that there will be a steep learning
curve when JWST becomes operational. In this paper we describe the science
objectives and detailed plans of the Transiting Exoplanet Community Early
Release Science (ERS) Program, which is a recently approved program for JWST
observations early in Cycle 1. The goal of this project, for which the obtained
data will have no exclusive access period, is to accelerate the acquisition and
diffusion of technical expertise for transiting exoplanet observations with
JWST, while also providing a compelling set of representative datasets that
will enable immediate scientific breakthroughs. The Transiting Exoplanet
Community ERS Program will exercise the time-series modes of all four JWST
instruments that have been identified as the consensus highest priorities,
observe the full suite of transiting planet characterization geometries
(transits, eclipses, and phase curves), and target planets with host stars that
span an illustrative range of brightnesses. The observations in this program
were defined through an inclusive and transparent process that had
participation from JWST instrument experts and international leaders in
transiting exoplanet studies. Community engagement in the project will be
centered on a two-phase Data Challenge that culminates with the delivery of
planetary spectra, time-series instrument performance reports, and open-source
data analysis toolkits in time to inform the agenda for Cycle 2 of the JWST
mission
Identification of carbon dioxide in an exoplanet atmosphere
Carbon dioxide (CO2) is a key chemical species that is found in a wide range of planetary atmospheres. In the context of exoplanets, CO2 is an indicator of the metal enrichment (that is, elements heavier than helium, also called ‘metallicity’)1–3, and thus the formation processes of the primary atmospheres of hot gas giants4–6. It is also one of the most promising species to detect in the secondary atmospheres of terrestrial exoplanets7–9. Previous photometric measurements of transiting planets with the Spitzer Space Telescope have given hints of the presence of CO2, but have not yielded definitive detections owing to the lack of unambiguous spectroscopic identification10–12. Here we present the detection of CO2 in the atmosphere of the gas giant exoplanet WASP-39b from transmission spectroscopy observations obtained with JWST as part of the Early Release Science programme13,14. The data used in this study span 3.0–5.5 micrometres in wavelength and show a prominent CO2 absorption feature at 4.3 micrometres (26-sigma significance). The overall spectrum is well matched by one-dimensional, ten-times solar metallicity models that assume radiative–convective–thermochemical equilibrium and have moderate cloud opacity. These models predict that the atmosphere should have water, carbon monoxide and hydrogen sulfide in addition to CO2, but little methane. Furthermore, we also tentatively detect a small absorption feature near 4.0 micrometres that is not reproduced by these models
Global Health Governance and the Commercial Sector: A Documentary Analysis of Tobacco Company Strategies to Influence the WHO Framework Convention on Tobacco Control
Heide Weishaar and colleagues did an analysis of internal tobacco industry documents together with other data and describe the industry's strategic response to the proposed World Health Organization Framework Convention on Tobacco Control
Gas7-Deficient Mouse Reveals Roles in Motor Function and Muscle Fiber Composition during Aging
Background: Growth arrest-specific gene 7 (Gas7) has previously been shown to be involved in neurite outgrowth in vitro; however, its actual role has yet to be determined. To investigate the physiological function of Gas7 in vivo, here we generated a Gas7-deficient mouse strain with a labile Gas7 mutant protein whose functions are similar to wild-type Gas7. Methodology/Principal Findings: Our data show that aged Gas7-deficient mice have motor activity defects due to decreases in the number of spinal motor neurons and in muscle strength, of which the latter may be caused by changes in muscle fiber composition as shown in the soleus. In cross sections of the soleus of Gas7-deficient mice, gross morphological features and levels of myosin heavy chain I (MHC I) and MHC II markers revealed significantly fewer fast fibers. In addition, we found that nerve terminal sprouting, which may be associated with slow and fast muscle fiber composition, was considerably reduced at neuromuscular junctions (NMJ) during aging. Conclusions/Significance: These findings indicate that Gas7 is involved in motor neuron function associated with muscle strength maintenance
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Hot Jupiters are among the best-studied exoplanets, but it is still poorly understood how their chemical composition and cloud properties vary with longitude. Theoretical models predict that clouds may condense on the nightside and that molecular abundances can be driven out of equilibrium by zonal winds. Here we report a phase-resolved emission spectrum of the hot Jupiter WASP-43b measured from 5 μm to 12 μm with the JWST’s Mid-Infrared Instrument. The spectra reveal a large day–night temperature contrast (with average brightness temperatures of 1,524 ± 35 K and 863 ± 23 K, respectively) and evidence for water absorption at all orbital phases. Comparisons with three-dimensional atmospheric models show that both the phase-curve shape and emission spectra strongly suggest the presence of nightside clouds that become optically thick to thermal emission at pressures greater than ~100 mbar. The dayside is consistent with a cloudless atmosphere above the mid-infrared photosphere. Contrary to expectations from equilibrium chemistry but consistent with disequilibrium kinetics models, methane is not detected on the nightside (2σ upper limit of 1–6 ppm, depending on model assumptions). Our results provide strong evidence that the atmosphere of WASP-43b is shaped by disequilibrium processes and provide new insights into the properties of the planet’s nightside clouds. However, the remaining discrepancies between our observations and our predictive atmospheric models emphasize the importance of further exploring the effects of clouds and disequilibrium chemistry in numerical models
Recommended from our members
The transiting exoplanet community early release science program for JWST
- …
