133 research outputs found
Visual search in ecological and non-ecological displays: Evidence for a non-monotonic effect of complexity on performance
Copyright @ 2013 PLoSThis article has been made available through the Brunel Open Access Publishing Fund.Considerable research has been carried out on visual search, with single or multiple targets. However, most studies have used artificial stimuli with low ecological validity. In addition, little is known about the effects of target complexity and expertise in visual search. Here, we investigate visual search in three conditions of complexity (detecting a king, detecting a check, and detecting a checkmate) with chess players of two levels of expertise (novices and club players). Results show that the influence of target complexity depends on level of structure of the visual display. Different functional relationships were found between artificial (random chess positions) and ecologically valid (game positions) stimuli: With artificial, but not with ecologically valid stimuli, a “pop out” effect was present when a target was visually more complex than distractors but could be captured by a memory chunk. This suggests that caution should be exercised when generalising from experiments using artificial stimuli with low ecological validity to real-life stimuli.This study is funded by Brunel University and the article is made available through the Brunel Open Access Publishing Fund
Probabilistic Analysis of Optimization Problems on Generalized Random Shortest Path Metrics
Simple heuristics often show a remarkable performance in practice for
optimization problems. Worst-case analysis often falls short of explaining this
performance. Because of this, "beyond worst-case analysis" of algorithms has
recently gained a lot of attention, including probabilistic analysis of
algorithms.
The instances of many optimization problems are essentially a discrete metric
space. Probabilistic analysis for such metric optimization problems has
nevertheless mostly been conducted on instances drawn from Euclidean space,
which provides a structure that is usually heavily exploited in the analysis.
However, most instances from practice are not Euclidean. Little work has been
done on metric instances drawn from other, more realistic, distributions. Some
initial results have been obtained by Bringmann et al. (Algorithmica, 2013),
who have used random shortest path metrics on complete graphs to analyze
heuristics.
The goal of this paper is to generalize these findings to non-complete
graphs, especially Erd\H{o}s-R\'enyi random graphs. A random shortest path
metric is constructed by drawing independent random edge weights for each edge
in the graph and setting the distance between every pair of vertices to the
length of a shortest path between them with respect to the drawn weights. For
such instances, we prove that the greedy heuristic for the minimum distance
maximum matching problem, the nearest neighbor and insertion heuristics for the
traveling salesman problem, and a trivial heuristic for the -median problem
all achieve a constant expected approximation ratio. Additionally, we show a
polynomial upper bound for the expected number of iterations of the 2-opt
heuristic for the traveling salesman problem.Comment: An extended abstract appeared in the proceedings of WALCOM 201
A Match in Time Saves Nine: Deterministic Online Matching With Delays
We consider the problem of online Min-cost Perfect Matching with Delays
(MPMD) introduced by Emek et al. (STOC 2016). In this problem, an even number
of requests appear in a metric space at different times and the goal of an
online algorithm is to match them in pairs. In contrast to traditional online
matching problems, in MPMD all requests appear online and an algorithm can
match any pair of requests, but such decision may be delayed (e.g., to find a
better match). The cost is the sum of matching distances and the introduced
delays.
We present the first deterministic online algorithm for this problem. Its
competitive ratio is , where is the
number of requests. This is polynomial in the number of metric space points if
all requests are given at different points. In particular, the bound does not
depend on other parameters of the metric, such as its aspect ratio. Unlike
previous (randomized) solutions for the MPMD problem, our algorithm does not
need to know the metric space in advance
Mind your step: the effects of mobile phone use on gaze behavior in stair climbing
Stair walking is a hazardous activity and a common cause of fatal and non-fatal falls. Previous studies have assessed the role of eye movements in stair walking by asking people to repeatedly go up and down stairs in quiet and controlled conditions, while the role of peripheral vision was examined by giving participants specific fixation instructions or working memory tasks. We here extend this research to stair walking in a natural environment with other people present on the stairs and a now common secondary task: Using one's mobile phone. Results show that using the mobile phone strongly draws one's attention away from the stairs, but that the distribution of gaze locations away from the phone is little influenced by using one's phone. Phone use also increased the time needed to walk the stairs, but handrail use remained low. These results indicate that limited foveal vision suffices for adequate stair walking in normal environments, but that mobile phone use has a strong influence on attention, which may pose problems when unexpected obstacles are encountered
What is the role of the film viewer? The effects of narrative comprehension and viewing task on gaze control in film
Film is ubiquitous, but the processes that guide viewers' attention while viewing film narratives are poorly understood. In fact, many film theorists and practitioners disagree on whether the film stimulus (bottom-up) or the viewer (top-down) is more important in determining how we watch movies. Reading research has shown a strong connection between eye movements and comprehension, and scene perception studies have shown strong effects of viewing tasks on eye movements, but such idiosyncratic top-down control of gaze in film would be anathema to the universal control mainstream filmmakers typically aim for. Thus, in two experiments we tested whether the eye movements and comprehension relationship similarly held in a classic film example, the famous opening scene of Orson Welles' Touch of Evil (Welles & Zugsmith, Touch of Evil, 1958). Comprehension differences were compared with more volitionally controlled task-based effects on eye movements. To investigate the effects of comprehension on eye movements during film viewing, we manipulated viewers' comprehension by starting participants at different points in a film, and then tracked their eyes. Overall, the manipulation created large differences in comprehension, but only produced modest differences in eye movements. To amplify top-down effects on eye movements, a task manipulation was designed to prioritize peripheral scene features: a map task. This task manipulation created large differences in eye movements when compared to participants freely viewing the clip for comprehension. Thus, to allow for strong, volitional top-down control of eye movements in film, task manipulations need to make features that are important to narrative comprehension irrelevant to the viewing task. The evidence provided by this experimental case study suggests that filmmakers' belief in their ability to create systematic gaze behavior across viewers is confirmed, but that this does not indicate universally similar comprehension of the film narrative
Scanpath analysis of expertise and culture in teacher gaze in real-world classrooms
Humans are born to learn by understanding where adults look. This is likely to extend into the classroom, making teacher gaze an important topic for study. Expert teacher gaze has mainly been investigated in the laboratory, and has focused mostly on one cognitive process: teacher attentional (i.e., information-seeking) gaze. No known research has made direct cultural comparisons of teacher gaze or successfully found expert–novice differences outside Western settings. Accordingly, we conducted a real-world study of expert teacher gaze across two cultural settings, exploring communicative (i.e., information-giving) as well as attentional gaze. Forty secondary school teachers wore eye-tracking glasses, with 20 teachers (10 expert; 10 novice) from the UK and 20 teachers (10 expert; 10 novice) from Hong Kong. We used a novel eye-tracking scanpath analysis to ascertain the importance of expertise and culture, individually and as a combination. Attentional teacher scanpaths were significantly more similar within than across expertise and expertise + culture sub-groups; communicative scanpaths were significantly more similar within than across expertise and culture. Detailed analysis suggests that (1) expert teachers refer back to students constantly through focused gaze during both attentional and communicative gaze and that (2) expert teachers in Hong Kong scan students more than experts do in the UK
The time course of contextual influences during lexical ambiguity resolution: Evidence from distributional analyses of fixation durations
It Takes Two–Skilled Recognition of Objects Engages Lateral Areas in Both Hemispheres
Our object recognition abilities, a direct product of our experience with objects, are fine-tuned to perfection. Left temporal and lateral areas along the dorsal, action related stream, as well as left infero-temporal areas along the ventral, object related stream are engaged in object recognition. Here we show that expertise modulates the activity of dorsal areas in the recognition of man-made objects with clearly specified functions. Expert chess players were faster than chess novices in identifying chess objects and their functional relations. Experts' advantage was domain-specific as there were no differences between groups in a control task featuring geometrical shapes. The pattern of eye movements supported the notion that experts' extensive knowledge about domain objects and their functions enabled superior recognition even when experts were not directly fixating the objects of interest. Functional magnetic resonance imaging (fMRI) related exclusively the areas along the dorsal stream to chess specific object recognition. Besides the commonly involved left temporal and parietal lateral brain areas, we found that only in experts homologous areas on the right hemisphere were also engaged in chess specific object recognition. Based on these results, we discuss whether skilled object recognition does not only involve a more efficient version of the processes found in non-skilled recognition, but also qualitatively different cognitive processes which engage additional brain areas
- …
