10 research outputs found
Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits
Background
Over the last several years, it has become apparent that there are critical problems with the hypothesis that brain dopamine (DA) systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Hypotheses related to DA function are undergoing a substantial restructuring, such that the classic emphasis on hedonia and primary reward is giving way to diverse lines of research that focus on aspects of instrumental learning, reward prediction, incentive motivation, and behavioral activation.
Objective
The present review discusses dopaminergic involvement in behavioral activation and, in particular, emphasizes the effort-related functions of nucleus accumbens DA and associated forebrain circuitry.
Results
The effects of accumbens DA depletions on food-seeking behavior are critically dependent upon the work requirements of the task. Lever pressing schedules that have minimal work requirements are largely unaffected by accumbens DA depletions, whereas reinforcement schedules that have high work (e.g., ratio) requirements are substantially impaired by accumbens DA depletions. Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related decision making. Rats with accumbens DA depletions reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead, these rats select a less-effortful type of food-seeking behavior.
Conclusions
Along with prefrontal cortex and the amygdala, nucleus accumbens is a component of the brain circuitry regulating effort-related functions. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue, or anergia in depression
Intergenerational effects of cocaine on maternal aggressive behavior and brain oxytocin in rat dams
Effects of chronic and intermittent cocaine treatment on dominance, aggression, and oxytocin levels in post-lactational rats
RATIONALE: Little is known about mechanisms underlying female rodent aggression during the late postpartum period with no pups present. Studies of aggression, dominance, and oxytocin (OT) response in cocaine-treated females are sparse. OBJECTIVES: This study was designed to examine dominance (drinking success) and aggression in a limited-access drinking model of water competition. Acute OT level measures were made on postpartum day (PPD) 36 in several brain regions of interest. Chronic and intermittent cocaine- and saline-treated and untreated rats 10 days post-weaning were tested (without pups) over PPDs 31–35 following cessation of cocaine treatment 10–30 days before testing. METHODS: Subjects were water-deprived overnight, and triads consisting of an untreated control (UN), a chronic continuous saline-treated (CS), and chronic continuous cocaine-treated (CC; 30 mg/kg/day throughout gestation) or a UN, an intermittent saline-treated (IS), and an intermittent cocaine-treated (IC; 30 mg/kg two consecutive days every 4 days throughout gestation until PPD 20) female were tested for aggression and drinking behavior during 5 min sessions on five consecutive days. The amygdala, medial preoptic area (MPOA), and ventral tegmental area were assayed for OT levels. RESULTS: CC and IC females were more aggressive than controls, but only IC females drank more often than controls. OT levels were lower in the MPOA of IC and CC females than in controls. CONCLUSIONS: Findings demonstrate that long after cessation of treatment, CC- and IC-treated non-lactating females (no pups present) had higher rates of aggression, altered drinking behavior, and acutely lower MPOA OT levels
Increasing the incentive salience of cocaine challenges preference for pup- over cocaine-associated stimuli during early postpartum: place preference and locomotor analyses in the lactating female rat
Specifying the Neurobiological Basis of Human Attachment: Brain, Hormones, and Behavior in Synchronous and Intrusive Mothers
Neural Regulation of Paternal Behavior in Mammals: Sensory, Neuroendocrine, and Experiential Influences on the Paternal Brain.
Across the animal kingdom, parents in many species devote extraordinary effort toward caring for offspring, often risking their lives and exhausting limited resources. Understanding how the brain orchestrates parental care, biasing effort over the many competing demands, is an important topic in social neuroscience. In mammals, maternal care is necessary for offspring survival and is largely mediated by changes in hormones and neuropeptides that fluctuate massively during pregnancy, parturition, and lactation (e.g., progesterone, estradiol, oxytocin, and prolactin). In the relatively small number of mammalian species in which parental care by fathers enhances offspring survival and development, males also undergo endocrine changes concurrent with birth of their offspring, but on a smaller scale than females. Thus, fathers additionally rely on sensory signals from their mates, environment, and/or offspring to orchestrate paternal behavior. Males can engage in a variety of infant-directed behaviors that range from infanticide to avoidance to care; in many species, males can display all three behaviors in their lifetime. The neural plasticity that underlies such stark changes in behavior is not well understood. In this chapter we summarize current data on the neural circuitry that has been proposed to underlie paternal care in mammals, as well as sensory, neuroendocrine, and experiential influences on paternal behavior and on the underlying circuitry. We highlight some of the gaps in our current knowledge of this system and propose future directions that will enable the development of a more comprehensive understanding of the proximate control of parenting by fathers
