30,258 research outputs found
High-Performance Bioinstrumentation for Real-Time Neuroelectrochemical Traumatic Brain Injury Monitoring
Traumatic brain injury (TBI) has been identified as an important cause of death and severe disability in all age groups and particularly in children and young adults. Central to TBIs devastation is a delayed secondary injury that occurs in 30–40% of TBI patients each year, while they are in the hospital Intensive Care Unit (ICU). Secondary injuries reduce survival rate after TBI and usually occur within 7 days post-injury. State-of-art monitoring of secondary brain injuries benefits from the acquisition of high-quality and time-aligned electrical data i.e., ElectroCorticoGraphy (ECoG) recorded by means of strip electrodes placed on the brains surface, and neurochemical data obtained via rapid sampling microdialysis and microfluidics-based biosensors measuring brain tissue levels of glucose, lactate and potassium. This article progresses the field of multi-modal monitoring of the injured human brain by presenting the design and realization of a new, compact, medical-grade amperometry, potentiometry and ECoG recording bioinstrumentation. Our combined TBI instrument enables the high-precision, real-time neuroelectrochemical monitoring of TBI patients, who have undergone craniotomy neurosurgery and are treated sedated in the ICU. Electrical and neurochemical test measurements are presented, confirming the high-performance of the reported TBI bioinstrumentation
A network approach for managing and processing big cancer data in clouds
Translational cancer research requires integrative analysis of multiple levels of big cancer data to identify and treat cancer. In order to address the issues that data is decentralised, growing and continually being updated, and the content living or archiving on different information sources partially overlaps creating redundancies as well as contradictions and inconsistencies, we develop a data network model and technology for constructing and managing big cancer data. To support our data network approach for data process and analysis, we employ a semantic content network approach and adopt the CELAR cloud platform. The prototype implementation shows that the CELAR cloud can satisfy the on-demanding needs of various data resources for management and process of big cancer data
Concurrent coupling of atomistic simulation and mesoscopic hydrodynamics for flows over soft multi-functional surfaces
We develop an efficient parallel multiscale method that bridges the atomistic
and mesoscale regimes, from nanometer to micron and beyond, via concurrent
coupling of atomistic simulation and mesoscopic dynamics. In particular, we
combine an all-atom molecular dynamics (MD) description for specific atomistic
details in the vicinity of the functional surface, with a dissipative particle
dynamics (DPD) approach that captures mesoscopic hydrodynamics in the domain
away from the functional surface. In order to achieve a seamless transition in
dynamic properties we endow the MD simulation with a DPD thermostat, which is
validated against experimental results by modeling water at different
temperatures. We then validate the MD-DPD coupling method for transient Couette
and Poiseuille flows, demonstrating that the concurrent MD-DPD coupling can
resolve accurately the continuum-based analytical solutions. Subsequently, we
simulate shear flows over polydimethylsiloxane (PDMS)-grafted surfaces (polymer
brushes) for various grafting densities, and investigate the slip flow as a
function of the shear stress. We verify that a "universal" power law exists for
the sliplength, in agreement with published results. Having validated the
MD-DPD coupling method, we simulate time-dependent flows past an endothelial
glycocalyx layer (EGL) in a microchannel. Coupled simulation results elucidate
the dynamics of EGL changing from an equilibrium state to a compressed state
under shear by aligning the molecular structures along the shear direction.
MD-DPD simulation results agree well with results of a single MD simulation,
but with the former more than two orders of magnitude faster than the latter
for system sizes above one micron.Comment: 11 pages, 12 figure
Transverse Spin Structure of the Nucleon through Target Single Spin Asymmetry in Semi-Inclusive Deep-Inelastic Reaction at Jefferson Lab
Jefferson Lab (JLab) 12 GeV energy upgrade provides a golden opportunity to
perform precision studies of the transverse spin and
transverse-momentum-dependent structure in the valence quark region for both
the proton and the neutron. In this paper, we focus our discussion on a
recently approved experiment on the neutron as an example of the precision
studies planned at JLab. The new experiment will perform precision measurements
of target Single Spin Asymmetries (SSA) from semi-inclusive electro-production
of charged pions from a 40-cm long transversely polarized He target in
Deep-Inelastic-Scattering kinematics using 11 and 8.8 GeV electron beams. This
new coincidence experiment in Hall A will employ a newly proposed solenoid
spectrometer (SoLID). The large acceptance spectrometer and the high polarized
luminosity will provide precise 4-D (, , and ) data on the
Collins, Sivers, and pretzelocity asymmetries for the neutron through the
azimuthal angular dependence. The full 2 azimuthal angular coverage in the
lab is essential in controlling the systematic uncertainties. The results from
this experiment, when combined with the proton Collins asymmetry measurement
and the Collins fragmentation function determined from the ee collision
data, will allow for a quark flavor separation in order to achieve a
determination of the tensor charge of the d quark to a 10% accuracy. The
extracted Sivers and pretzelocity asymmetries will provide important
information to understand the correlations between the quark orbital angular
momentum and the nucleon spin and between the quark spin and nucleon spin.Comment: 23 pages, 13 figures, minor corrections, matches published versio
HIJING 1.0: A Monte Carlo Program for Parton and Particle Production in High Energy Hadronic and Nuclear Collisions
Based on QCD-inspired models for multiple jets production, we developed a
Monte Carlo program to study jet and the associated particle production in high
energy , and collisions. The physics behind the program which
includes multiple minijet production, soft excitation, nuclear shadowing of
parton distribution functions and jet interaction in dense matter is briefly
discussed. A detailed description of the program and instructions on how to use
it are given.Comment: 38 pages in LaTex, published in Comp. Phys. Comm. 83, 307 (1994)
The quantum mechanics of perfect fluids
We consider the canonical quantization of an ordinary fluid. The resulting
long-distance effective field theory is derivatively coupled, and therefore
strongly coupled in the UV. The system however exhibits a number of
peculiarities, associated with the vortex degrees of freedom. On the one hand,
these have formally a vanishing strong-coupling energy scale, thus suggesting
that the effective theory's regime of validity is vanishingly narrow. On the
other hand, we prove an analog of Coleman's theorem, whereby the semiclassical
vacuum has no quantum counterpart, thus suggesting that the vortex premature
strong-coupling phenomenon stems from a bad identification of the ground state
and of the perturbative degrees of freedom. Finally, vortices break the usual
connection between short distances and high energies, thus potentially
impairing the unitarity of the effective theory.Comment: 35 page
Spectropolarimetry of Supernovae
Overwhelming evidence has accumulated in recent years that supernova
explosions are intrinsically 3-dimensional phenomena with significant
departures from spherical symmetry. We review the evidence derived from
spectropolarimetry that has established several key results: virtually all
supernovae are significantly aspherical near maximum light; core-collapse
supernovae behave differently than thermonuclear (Type Ia) supernovae; the
asphericity of core-collapse supernovae is stronger in the inner layers showing
that the explosion process itself is strongly aspherical; core-collapse
supernovae tend to establish a preferred direction of asymmetry; the
asphericity is stronger in the outer layers of thermonuclear supernovae
providing constraints on the burning process. We emphasize the utility of the
Q/U plane as a diagnostic tool and revisit SN 1987A and SN 1993J in a
contemporary context. An axially-symmetric geometry can explain many basic
features of core-collapse supernovae, but significant departures from axial
symmetry are needed to explain most events. We introduce a spectropolarimetry
type to classify the range of behavior observed in polarized supernovae.
Understanding asymmetries in supernovae is important for phenomena as diverse
as the origins of gamma-ray bursts and the cosmological applications of Type Ia
supernovae in studies of the dark energy content of the universe.Comment: Draft of Annual Review article prior to final copy editing; 85 pages,
13 figures, 1 tabl
Desynchronizing effect of high-frequency stimulation in a generic cortical network model
Transcranial Electrical Stimulation (TCES) and Deep Brain Stimulation (DBS)
are two different applications of electrical current to the brain used in
different areas of medicine. Both have a similar frequency dependence of their
efficiency, with the most pronounced effects around 100Hz. We apply
superthreshold electrical stimulation, specifically depolarizing DC current,
interrupted at different frequencies, to a simple model of a population of
cortical neurons which uses phenomenological descriptions of neurons by
Izhikevich and synaptic connections on a similar level of sophistication. With
this model, we are able to reproduce the optimal desynchronization around
100Hz, as well as to predict the full frequency dependence of the efficiency of
desynchronization, and thereby to give a possible explanation for the action
mechanism of TCES.Comment: 9 pages, figs included. Accepted for publication in Cognitive
Neurodynamic
- …
