7,735 research outputs found
Identification and evaluation of educational uses and users for the STS. Educational planning for utilization of space shuttle ED-PLUSS
A planning and feasibility study to identify and document a methodology needed to incorporate educational programs into future missions and operations of the space transportation system was conducted. Six tasks were identified and accomplished during the study. The task statements are as follows: (1) potential user identification, (2) a review of space education programs, (3) development of methodology for user involvement, (4) methods to encourage user awareness, (5) compilation of follow-on ideas, and (6) response to NASA questions. Specific recommendations for improving the educational coverage of space activities are provided
Educational planning for utilization of space shuttle (ED-PLUSS). Executive summary: Identification and evaluation of educational uses and users for the STS
The development and application of educational programs to improve public awareness of the space shuttle/space lab capabilities are reported. Special efforts were made to: identify the potential user, identify and analyze space education programs, plan methods for user involvement, develop techniques and programs to encourage new users, and compile follow-on ideas
Modeling Quantum Optical Components, Pulses and Fiber Channels Using OMNeT++
Quantum Key Distribution (QKD) is an innovative technology which exploits the
laws of quantum mechanics to generate and distribute unconditionally secure
cryptographic keys. While QKD offers the promise of unconditionally secure key
distribution, real world systems are built from non-ideal components which
necessitates the need to model and understand the impact these non-idealities
have on system performance and security. OMNeT++ has been used as a basis to
develop a simulation framework to support this endeavor. This framework,
referred to as "qkdX" extends OMNeT++'s module and message abstractions to
efficiently model optical components, optical pulses, operating protocols and
processes. This paper presents the design of this framework including how
OMNeT++'s abstractions have been utilized to model quantum optical components,
optical pulses, fiber and free space channels. Furthermore, from our toolbox of
created components, we present various notional and real QKD systems, which
have been studied and analyzed.Comment: Published in: A. F\"orster, C. Minkenberg, G. R. Herrera, M. Kirsche
(Eds.), Proc. of the 2nd OMNeT++ Community Summit, IBM Research - Zurich,
Switzerland, September 3-4, 201
Low-energy electron transport with the method of discrete ordinates
The one-dimensional discrete ordinates code ANISN was adapted to transport low energy (a few MeV) electrons. Calculated results obtained with ANISN were compared with experimental data for transmitted electron energy and angular distribution data for electrons normally incident on aluminum slabs of various thicknesses. The calculated and experimental results are in good agreement for a thin slab (0.2 of the electron range), but not for the thicker slabs (0.6 of the electron range). Calculated results obtained with ANISN were also compared with results obtained using Monte Carlo methods
Coherent states, constraint classes, and area operators in the new spin-foam models
Recently, two new spin-foam models have appeared in the literature, both
motivated by a desire to modify the Barrett-Crane model in such a way that the
imposition of certain second class constraints, called cross-simplicity
constraints, are weakened. We refer to these two models as the FKLS model, and
the flipped model. Both of these models are based on a reformulation of the
cross-simplicity constraints. This paper has two main parts. First, we clarify
the structure of the reformulated cross-simplicity constraints and the nature
of their quantum imposition in the new models. In particular we show that in
the FKLS model, quantum cross-simplicity implies no restriction on states. The
deeper reason for this is that, with the symplectic structure relevant for
FKLS, the reformulated cross-simplicity constraints, in a certain relevant
sense, are now \emph{first class}, and this causes the coherent state method of
imposing the constraints, key in the FKLS model, to fail to give any
restriction on states. Nevertheless, the cross-simplicity can still be seen as
implemented via suppression of intertwiner degrees of freedom in the dynamical
propagation. In the second part of the paper, we investigate area spectra in
the models. The results of these two investigations will highlight how, in the
flipped model, the Hilbert space of states, as well as the spectra of area
operators exactly match those of loop quantum gravity, whereas in the FKLS (and
Barrett-Crane) models, the boundary Hilbert spaces and area spectra are
different.Comment: 21 pages; statements about gamma limits made more precise, and minor
phrasing change
Holography in the EPRL Model
In this research announcement, we propose a new interpretation of the EPR
quantization of the BC model using a functor we call the time functor, which is
the first example of a CLa-ren functor. Under the hypothesis that the universe
is in the Kodama state, we construct a holographic version of the model.
Generalisations to other CLa-ren functors and connections to model category
theory are considered.Comment: research announcement. Latex fil
- …
