159 research outputs found
Gravitational physics with antimatter
The production of low-energy antimatter provides unique opportunities to
search for new physics in an unexplored regime. Testing gravitational
interactions with antimatter is one such opportunity. Here a scenario based on
Lorentz and CPT violation in the Standard- Model Extension is considered in
which anomalous gravitational effects in antimatter could arise.Comment: 5 pages, presented at the International Conference on Exotic Atoms
(EXA 2008) and the 9th International Conference on Low Energy Antiproton
Physics (LEAP 2008), Vienna, Austria, September 200
Stochastic Gravity: Theory and Applications
Whereas semiclassical gravity is based on the semiclassical Einstein equation
with sources given by the expectation value of the stress-energy tensor of
quantum fields, stochastic semiclassical gravity is based on the
Einstein-Langevin equation, which has in addition sources due to the noise
kernel. In the first part, we describe the fundamentals of this new theory via
two approaches: the axiomatic and the functional. In the second part, we
describe three applications of stochastic gravity theory. First, we consider
metric perturbations in a Minkowski spacetime, compute the two-point
correlation functions of these perturbations and prove that Minkowski spacetime
is a stable solution of semiclassical gravity. Second, we discuss structure
formation from the stochastic gravity viewpoint. Third, we discuss the
backreaction of Hawking radiation in the gravitational background of a black
hole and describe the metric fluctuations near the event horizon of an
evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews
in Relativity gr-qc/0307032 ; it includes new sections on the Validity of
Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric
Fluctuations of an Evaporating Black Hol
Considering Protonation as a Posttranslational Modification Regulating Protein Structure and Function
Post-translational modification of proteins is an evolutionarily conserved mechanism for regulating activity, binding affinities and stability. Compared with established post-translational modifications such as phosphorylation or uniquitination, post-translational modification by protons within physiological pH ranges is a less recognized mechanism for regulating protein function. By changing the charge of amino acid side chains, post-translational modification by protons can drive dynamical changes in protein conformation and function. Addition and removal of a proton is rapid and reversible and in contrast to most other post-translational modifications does not require an enzyme. Signaling specificity is achieved by only a minority of sites in proteins titrating within the physiological pH range. Here, we examine the structural mechanisms and functional consequences of proton post-translational modification of pH-sensing proteins regulating different cellular processes
The Fate of Porous Hydroxyapatite Granules Used in Facial Skeletal Augmentation
Facial appearance is largely determined by the morphology of the underlying skeleton. Hydroxyapatite is one of several materials available to enhance projection of the facial skeleton. This study evaluated the long-term maintenance of augmented bony projection when porous hydroxyapatite granules are used on the facial skeleton. Ten female patients aged 28–58 years were studied following aesthetic augmentation of the facial skeleton at 24 sites using porous hydroxyapatite granules. Postoperative CT scans at 3 months served as the baseline measurement and compared with scans taken at 1 and 2 years, with the thickness of the hydroxyapatite measured in axial and coronal planes. Thickness of original bone plus overlay of hydroxyapatite, thickness of the overlying soft tissue, and the overall projection (bone plus soft tissue) were recorded. It was found that 99.7% of the hydroxyapatite was maintained at 2 years, with no statistical difference (t test) from the baseline measurement. The overall projection (bony and soft tissue) was maintained as there was no evidence of native bone resorption or soft tissue atrophy. Radiographic results confirmed that the use of porous hydroxyapatite granules for enhancement of the facial skeleton is not only a predictable procedure, but maintains full bony projection at 2 years
Pre-Existing T- and B-Cell Defects in One Progressive Multifocal Leukoencephalopathy Patient
Progressive multifocal leukoencephalopathy (PML) usually occurs in patients with severe immunosuppression, hematological malignancies, chronic inflammatory conditions or receiving organ transplant. Recently, PML has also been observed in patients treated with monoclonal antibodies. By taking advantage of the availability of samples from a multiple sclerosis (MS) patient treated with natalizumab, the antibody anti-α4 integrin, who developed PML and was monitored starting before therapy initiation, we investigated the fate of T and B lymphocytes in the onset of PML. Real-time PCR was used to measure new T- and B-cell production by means of T-cell receptor excision circle (TREC) and K-deleting recombination excision circle (KREC) analysis and to quantify transcripts for CD34, terminal-deoxynucleotidyltransferase, and V pre-B lymphocyte gene 1. T- and B-cell subsets and T-cell heterogeneity were measured by flow cytometry and spectratyping. The data were compared to those of untreated and natalizumab-treated MS patients and healthy donors. Before therapy, a patient who developed PML had a low TREC and KREC number; TRECs remained low, while KRECs and pre-B lymphocyte gene 1 transcripts peaked at 6 months of therapy and then decreased at PML diagnosis. Flow cytometry confirmed the deficient number of newly produced T lymphocytes, counterbalanced by an increase in TEMRA cells. The percentage of naive B cells increased by approximately 70% after 6 months of therapy, but B lymphocyte number remained low for the entire treatment period. T-cell heterogeneity and immunoglobulins were reduced
Nicotine and smoking do not decrease basal gastric mucosal blood flow in anesthetized rats
The literature regarding the effect of nicotine and cigarette smoke on gastric blood flow is conflicting. The hydrogen gas clearance technique was used to measure the effects of nicotine and cigarette smoke on basal gastric mucosal blood flow in anesthetized rats. Blood flow was measured before, during, and after treatment with either intravenous nicotine (4 or 40 μg/kg/min) or inhaled cigarette smoke (nicotine or nicotine free). Neither intravenous nicotine nor cigarette smoke significantly altered gastric mucosal blood flow. On the other hand, hypotension produced by hemorrhage significantly decreased mucosal blood flow ( P <0.05). Thus the technique used could detect a decrease in blood flow. These findings indicate that in the anesthetized rats, hypotension but not intravenous nicotine or cigarette smoke, in the doses given, reduce gastric mucosal blood flow.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44399/1/10620_2005_Article_BF01320320.pd
Overexpression of Myocilin in the Drosophila Eye Activates the Unfolded Protein Response: Implications for Glaucoma
Glaucoma is the world's second leading cause of bilateral blindness with progressive loss of vision due to retinal ganglion cell death. Myocilin has been associated with congenital glaucoma and 2-4% of primary open angle glaucoma (POAG) cases, but the pathogenic mechanisms remain largely unknown. Among several hypotheses, activation of the unfolded protein response (UPR) has emerged as a possible disease mechanism.We used a transgenic Drosophila model to analyze whole-genome transcriptional profiles in flies that express human wild-type or mutant MYOC in their eyes. The transgenic flies display ocular fluid discharge, reflecting ocular hypertension, and a progressive decline in their behavioral responses to light. Transcriptional analysis shows that genes associated with the UPR, ubiquitination, and proteolysis, as well as metabolism of reactive oxygen species and photoreceptor activity undergo altered transcriptional regulation. Following up on the results from these transcriptional analyses, we used immunoblots to demonstrate the formation of MYOC aggregates and showed that the formation of such aggregates leads to induction of the UPR, as evident from activation of the fluorescent UPR marker, xbp1-EGFP. CONCLUSIONS / SIGNIFICANCE: Our results show that aggregation of MYOC in the endoplasmic reticulum activates the UPR, an evolutionarily conserved stress pathway that culminates in apoptosis. We infer from the Drosophila model that MYOC-associated ocular hypertension in the human eye may result from aggregation of MYOC and induction of the UPR in trabecular meshwork cells. This process could occur at a late age with wild-type MYOC, but might be accelerated by MYOC mutants to account for juvenile onset glaucoma
Extracts of Azadirachta indica and Melia azedarach seeds inhibit folliculogenesis in albino rats
- …
