18 research outputs found

    Biocompatibility of RealSeal, its primer and AH Plus implanted in subcutaneous connective tissue of rats

    Get PDF
    OBJECTIVE: This study tested rat connective tissue response to RealSeal, RealSeal primer or AH Plus after 7, 15, 30, 60 and 90 days of implantation. MATERIAL AND METHODS: Thirty Wistar rats had subcutaneous sockets created on their back and received four implants each of polyethylene tubes containing one of the materials tested according to the groups: AH (AH Plus Sealer); RS (RealSeal Sealer); RP (RealSeal Primer); CG (control group - empty tube). After histological processing, sections were analyzed to identify the presence of neutrophils, lymphocytes and plasma cells, eosinophils, macrophages and giant cells, as well as fibrous capsule and abscesses, by an examiner using light microscope. Kruskal-Wallis and multiple-comparisons test were used for statistical analysis. Significance level was set at 5%. RESULTS: Lymphoplasmacytic infiltrate scores significantly higher than those of the control group were observed at 14 and 60 days in AH group, and at 90 days in RS group (p<0.05). There were no differences in terms of presence of macrophages, giant cells, eosinophils, neutrophils or fibrosis. AH Plus group scored higher for abscesses at 7 days than after any other period (p=0.031). RP group scored higher for lymphoplasmacytic infiltrate at 14 days than at 90 days (p=0.04). CONCLUSION: The main contribution of this study was to demonstrate that issues involved with tissue tolerance of a Resilon-containing sealer, RealSeal Sealer, cannot be attributed to its primer content

    The Definition of Sarcomeric and Non-Sarcomeric Gene Mutations in Hypertrophic Cardiomyopathy Patients: A Multicenter Diagnostic Study Across Turkiye

    No full text
    Background: Hypertrophic cardiomyopathy is a common genetic heart disease and up to 40%-60% of patients have mutations in cardiac sarcomere protein genes. This genetic diagnosis study aimed to detect pathogenic or likely pathogenic sarcomeric and non-sarcomeric gene mutations and to confirm a final molecular diagnosis in patients diagnosed with hypertrophic cardiomyopathy. Methods: A total of 392 patients with hypertrophic cardiomyopathy were included in this nationwide multicenter study conducted at 23 centers across Turkiye. All samples were analyzed with a 17-gene hypertrophic cardiomyopathy panel using next-generation sequencing technology. The gene panel includes ACTC1, DES, FLNC, GLA, LAMP2, MYBPC3, MYH7, MYL2, MYL3, PLN, PRKAG2, PTPN11, TNNC1, TNNI3, TNNT2, TPM1, and TTR genes. Results: The next-generation sequencing panel identified positive genetic variants (variants of unknown significance, likely pathogenic or pathogenic) in 12 genes for 121 of 392 samples, including sarcomeric gene mutations in 30.4% (119/392) of samples tested, galactosidase alpha variants in 0.5% (2/392) of samples and TTR variant in 0.025% (1/392). The likely pathogenic or pathogenic variants identified in 69 (57.0%) of 121 positive samples yielded a confirmed molecular diagnosis. The diagnostic yield was 17.1% (15.8% for hypertrophic cardiomyopathy variants) for hypertrophic cardiomyopathy and hypertrophic cardiomyopathy phenocopies and 0.5% for Fabry disease. Conclusions: Our study showed that the distribution of genetic mutations, the prevalence of Fabry disease, and TTR amyloidosis in the Turkish population diagnosed with hypertrophic cardiomyopathy were similar to the other populations, but the percentage of sarcomeric gene mutations was slightly lower
    corecore