240 research outputs found

    't Hooft Operators in Gauge Theory from Toda CFT

    Full text link
    We construct loop operators in two dimensional Toda CFT and calculate with them the exact expectation value of certain supersymmetric 't Hooft and dyonic loop operators in four dimensional \Ncal=2 gauge theories with SU(N) gauge group. Explicit formulae for 't Hooft and dyonic operators in \Ncal=2^* and \Ncal=2 conformal SQCD with SU(N) gauge group are presented. We also briefly speculate on the Toda CFT realization of arbitrary loop operators in these gauge theories in terms of topological web operators in Toda CFT.Comment: 49 pages, LaTeX. Typos fixed, references adde

    A space–time Trefftz discontinuous Galerkin method for the acoustic wave equation in first-order formulation

    Get PDF
    We introduce a space–time Trefftz discontinuous Galerkin method for the first-order transient acoustic wave equations in arbitrary space dimensions, extending the one-dimensional scheme of Kretzschmar et al. (IMA J Numer Anal 36:1599–1635, 2016). Test and trial discrete functions are space–time piecewise polynomial solutions of the wave equations. We prove well-posedness and a priori error bounds in both skeleton-based and mesh-independent norms. The space–time formulation corresponds to an implicit time-stepping scheme, if posed on meshes partitioned in time slabs, or to an explicit scheme, if posed on “tent-pitched” meshes. We describe two Trefftz polynomial discrete spaces, introduce bases for them and prove optimal, high-order h-convergence bounds

    Measurements of daily energy intake and total energy expenditure in people with dementia in care homes: the use of wearable technology.

    Get PDF
    Objectives: To estimate daily total energy expenditure (TEE) using a physical activity monitor, combined with dietary assessment of energy intake to assess the relationship between daily energy expenditure and patterns of activity with energy intake in people with dementia living in care homes. Design and setting: A cross-sectional study in care homes in the UK. Participants: Twenty residents with confirmed dementia diagnosis were recruited from two care homes that specialised in dementia care. Measurements: A physical activity monitor (Sensewear TM Armband , Body Media, Pittsburgh, PA) was employed to objectively determine total energy expenditure, sleep duration and physical activity. The armband was placed around the left upper triceps for up to 7 days. Energy intake was determined by weighing all food and drink items over 4 days (3 weekdays and 1 weekend day) including measurements of food wastage. Results: The mean age was 78.7 (SD ± 11.8) years, Body Mass Index (BMI) 23.0 (SD ± 4.2) kg/m2 ; 50% were women. Energy intake (mean 7.4; SD ± 2.6) MJ/d) was correlated with TEE (mean 7.6; SD ± 1.8 MJ/d; r=0.49, p<0.05). Duration of sleeping ranged from 0.4-12.5 (mean 6.1) hrs/d and time spent lying down was 1.3-16.0 (8.3) hrs/d. On average residents spent 17.9 (6.3-23.4) hrs/d undertaking sedentary activity. TEE was correlated with BMI (r=0.52, p<0.05) and body weight (r=0.81, p<0.001) but inversely related to sleep duration (r=-0.59, p<0.01) and time lying down (r=-0.62, p<0.01). Multiple linear regression analysis revealed that after taking BMI, sleep duration and time spent lying down into account, TEE was no longer correlated with energy intake. Conclusions: The results show the extent to which body mass, variable activity and sleep patterns may be contributing to TEE and together with reduced energy intake, energy requirements were not satisfied. Thus wearable technology has the potential to offer real-time monitoring to provide appropriate nutrition management that is more person-centred to prevent weight loss in dementi

    Low dose cranial irradiation-induced cerebrovascular damage is reversible in mice

    Get PDF
    BACKGROUND: High-dose radiation-induced blood-brain barrier breakdown contributes to acute radiation toxicity syndrome and delayed brain injury, but there are few data on the effects of low dose cranial irradiation. Our goal was to measure blood-brain barrier changes after low (0.1 Gy), moderate (2 Gy) and high (10 Gy) dose irradiation under in vivo and in vitro conditions. METHODOLOGY: Cranial irradiation was performed on 10-day-old and 10-week-old mice. Blood-brain barrier permeability for Evans blue, body weight and number of peripheral mononuclear and circulating endothelial progenitor cells were evaluated 1, 4 and 26 weeks postirradiation. Barrier properties of primary mouse brain endothelial cells co-cultured with glial cells were determined by measurement of resistance and permeability for marker molecules and staining for interendothelial junctions. Endothelial senescence was determined by senescence associated β-galactosidase staining. PRINCIPLE FINDINGS: Extravasation of Evans blue increased in cerebrum and cerebellum in adult mice 1 week and in infant mice 4 weeks postirradiation at all treatment doses. Head irradiation with 10 Gy decreased body weight. The number of circulating endothelial progenitor cells in blood was decreased 1 day after irradiation with 0.1 and 2 Gy. Increase in the permeability of cultured brain endothelial monolayers for fluorescein and albumin was time- and radiation dose dependent and accompanied by changes in junctional immunostaining for claudin-5, ZO-1 and β-catenin. The number of cultured brain endothelial and glial cells decreased from third day of postirradiation and senescence in endothelial cells increased at 2 and 10 Gy. CONCLUSION: Not only high but low and moderate doses of cranial irradiation increase permeability of cerebral vessels in mice, but this effect is reversible by 6 months. In-vitro experiments suggest that irradiation changes junctional morphology, decreases cell number and causes senescence in brain endothelial cells

    Cognitive Reserve and the Prevention of Dementia: the Role of Physical and Cognitive Activities

    Get PDF
    Purpose of Review: The article discusses the two most significant modifiable risk factors for dementia, namely, physical inactivity and lack of stimulating cognitive activity, and their effects on developing cognitive reserve. Recent Findings: Both of these leisure-time activities were associated with significant reductions in the risk of dementia in longitudinal studies. In addition, physical activity, particularly aerobic exercise, is associated with less age-related gray and white matter loss and with less neurotoxic factors. On the other hand, cognitive training studies suggest that training for executive functions (e.g., working memory) improves prefrontal network efficiency, which provides support to brain functioning in the face of cognitive decline. Summary: While physical activity preserves neuronal structural integrity and brain volume (hardware), cognitive activity strengthens the functioning and plasticity of neural circuits (software), thus supporting cognitive reserve in different ways. Future research should examine whether lifestyle interventions incorporating these two domains can reduce incident dementia

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Sliding Wear Behavior of Al2O3-TiO2 Coatings Fabricated by the Suspension Plasma Spraying Technique

    Full text link
    [EN] The friction and dry sliding wear behavior of alumina and alumina-titania near-nanometric coatings were examined. Coatings were obtained by the suspension plasma spraying technique. Dry sliding wear tests were performed on a ball-on-disk tribometer, with an Al2O3 ball as counterpart material, a normal load of 2 N, a sliding distance of 1200 m and a sliding speed of 0.1 m/s. The effect of including TiO2 in the fabricated coatings on friction coefficient behavior, wear rates and wear damage patterns was determined. The addition of TiO2 to the coatings was found to greatly increase wear resistance by, for example, 2.6-fold for 40 wt% of TiO2. The analysis of the wear surface was correlated with microstructural parameters, mechanical properties and wear rates.The authors wish to thank for the Spanish Ministry of Economy and Competitiveness (MAT2012-38364-C03) and the Autonomous Government of Valencia for funding for the stay in SPCTS-UMR CNRS (France), and the French FCENANOSURF consortium funded by the French Ministry and Industry and local governments of Region Centre and Region Limousin.Klyatskina, E.; Espinosa Fernández, L.; Darut, G.; Segovia López, EF.; Salvador Moya, MD.; Montavon, G.; Agorges, H. (2015). Sliding Wear Behavior of Al2O3-TiO2 Coatings Fabricated by the Suspension Plasma Spraying Technique. Tribology Letters. 59(1):1-9. https://doi.org/10.1007/s11249-015-0530-5S19591Pawlowski, L.: The Science and Engineering of Thermal Spray Coatings. Wiley: Hoboken (2008)Lampe, Th, Eisenberg, S., Cabeo, E.R.: Plasma surface engineering in the automotive industry—trends and future prospective. Surf. Coat. Technol. 174–175, 1–7 (2003)Wang, Y., Jiang, S., Wang, M., Wang, S., Xiao, T.D., Strutt, P.R.: Abrasive wear characteristics of plasma sprayed nanostructured alumina/titania coatings. Wear 237, 176–185 (2000)Kabacoff, L.T.: Nanoceramic coatings exhibit much higher toughness and wear resistance than conventional coatings. AMPITAC Newslett. 6(1), 37–42 (2002)Wang, M., Shaw, L.L.: Effects of the powder manufacturing method on microstructure and wear performance of plasma sprayed alumina–titania coatings. Surf. Coat. Technol. 202, 34–44 (2007)Shaw, L.L., Goberman, D., Ren, R., Gell, M., Jing, S., Wang, Y., Xiao, T.D., Strutt, P.R.: The dependency of microstructure and properties of nanostructured coatings on plasma spray conditions. Surf. Coat. Technol. 130, 1–8 (2000)Dahotre, N.B., Nayak, S.: Nanocoatings for engine application. Surf. Coat. Technol. 194(1), 58–67 (2005)Sathish, S., Geetha, M., Aruna, S.T., Balaji, N., Rajam, K.S., Asokamani, R.: Sliding wear behavior of plasma sprayed nanoceramic coatings for biomedical applications. Wear 271, 934–941 (2011)Pawlowski, L.: Finely grained nanometric and submicrometric coatings by thermal sparing: a review. Surf. Coat. Technol. 202, 4318–4328 (2008)Xiao, D., Wang, Y., Strutt, P.: Fabrication and evaluation of plasma sprayed nanostructured alumina–titania coatings with superior properties. Mater. Sci. Eng. 301, 80–89 (2001)Tjong, S.C., Chen, H.: Nanocrystalline materials and coatings. Mater. Sci. Eng. 45, 1–88 (2004)Fauchais, P., Montavon, G., Bertrand, G.: From powders to thermally sprayed coatings. J. Therm. Spray Technol. 19, 56–80 (2010)Lima, R.S., Marple, B.R.: Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: a review. J. Therm. Spray Technol. 16, 40–63 (2007)Fauchais, P., Etchart-Salas, R., Delbos, C., Tognonvi, M., Rat, V., Coudert, J.F., Chartier, T.: Suspension and solution plasma spraying of finely structured layers: potential application to SOFCs. J. Phys. D Appl. Phys. 40, 2394–2406 (2007)Ramachandran, K., Selvajaran, V., Ananthapadmanabhan, P.V., Sreekumar, K.P.: Microstructure, adhesion, micro hardness, abrasive wear resistance and electrical resistivity of the plasma sprayed alumina and alumina–titania coatings. Thin Solid Films 315, 144–152 (1998)Lee, S.W., Morillo, C., Lira-Olivares, J., Kim, S.H., Sekino, T., Niihara, K., Hockey, B.J.: Tribological and microstructural analysis of Al2O3/13TiO2 nanocomposites to use in femoral head of hip replacement. Wear 225, 1040–1044 (2003)Dejang, N., Watcharapasorn, A., Wirojupatump, S., Niranatlumpong, P., Jiansirisomboon, S.: Fabrication and properties of plasma-sprayed Al2O3/TiO2 composite coatings: a role of nano-sized TiO2 addition. Surf. Coat. Technol. 204, 1651–1657 (2010)Yimaz, S.: An evaluation of plasma sprayed coatings based on Al2O3 and Al2O3–13wt% TiO2 with bond coat on pure titanium substrate. Ceram. Int. 35, 2017–2022 (2009)Fervel, V., Normand, B., Coddet, C.: Tribological behavior of plasma sprayed Al2O3-based cermet coatings. Wear 230(1), 70–77 (1999)Vargas, F., Ageorges, H., Fauchais, P., López, M.E.: Mechanical and a tribological performance of Al2O3 coatings elaborated by flame and plasma spraying. Surf. Coat. Technol. 205, 1132–1136 (2010)Bacciochini, A., Ilavsky, J., Montavon, G., Denoirjean, A., Ben-ettouil, F., Valette, S., Fauchais, P., Wittmann-teneze, K.: Quantification of void network architectures of suspension plasma-sprayed (SPS) yttria-stabilized zirconia (YSZ) coatings using ultra-small-angle X-ray scattering (USAXS). Mater. Sci. Eng. 528, 91–102 (2010)ASTM International: ASTM G99-03: Standard test method for wear testing with a pin-on-disc apparatus. ASTM annual book of standards. ASTM International: West Conshohocken (2003)Lancaster, K.: The influence of substrate hardness on the formation and endurance of molybdenum disulphide films. Wear 10, 103–107 (1967)Fauchais, P., Rat, V., Delbos, C., Fazilleau, J., Coudert, J.F., Chartier, T., Bianchi, L.: Understanding of suspension plasma spraying of finely structured coatings for SOFC. IEEE Plasma Sci. 33(2), 920–930 (2005)Bannier, E., Vicent, M., Rayón, E., Benavente, R., Salvador, M.D., Sánchez, E.: Effect of TiO2 addition on the microstructure and nanomechanical properties of Al2O3 suspension plasma sprayed coatings. Appl. Surf. Sci. 316, 141–146 (2014)Darut, G., Klyatskina, E., Valette, S., Carles, P., Denoirjean, A., Montavon, G., Ageorges, H., Segovia, F., Salvador, M.D.: Architecture and phases composition of suspension plasma sprayed alumina–titania sub-micrometer-sized coatings. Mater. Lett. 67, 241–244 (2012)Fauchais, P., Montavon, G.: Latest developments in suspension and liquid precursor thermal spraying. J. Therm. Spray Technol. 19(1–2), 226–239 (2010)Darut, G., Ben-Ettouli, F., Denoirjean, A., Montavon, G., Ageourges, H., Fauchais, P.: Dry sliding behavior of sub-micrometer-sized suspension plasma sprayed ceramic oxide coatings. J. Therm. Spray Technol. 19, 275–285 (2010)Tingaud, O., Bacciochini, A., Montavon, G., Denoirjean, A., Fauchais, P.: Suspension DC plasma spraying of thick finely-structured ceramic coatings: process manufacturing mechanisms. Surf. Coat. Technol. 203, 2157–2161 (2009)Guesama, S., Bounazef, M., Nardin, P., Sahraoui, T.: Wear behavior of alumina–titania coatings: analysis of process and parameters. Ceram. Int. 32, 13–19 (2006)Espinosa-Fernández, L., Borrell, A., Salvador, M.D., Gutierrez-Gonzalez, C.F.: Sliding wear behavior of WC–Co–Cr3C2–VC composites fabricated by conventional and non-conventional techniques. Wear 307, 60–67 (2013)Zhang, J., Moslehy, F.A., Rice, S.L.: A model for friction in quasi-steady-state. Part I. Derivation. Wear 149, 1–12 (1991)Zhang, J., Moslehy, F.A., Rice, S.L.: A model for friction in quasi-steady-state sliding Part II. Numerical results and discussion. Wear 149, 13–25 (1991)Bolelli, G., Cannilo, V., Lusvarghi, L., Manfredini, T.: Wear behaviour of thermally sprayed ceramic oxide coatings. Wear 261, 1298–1315 (2006)Normand, B., Fervel, V., Coddet, C., Nikitine, V.: Tribological properties of plasma sprayed alumina–titania coatings: next term role and control of the microstructure. Surf. Coat. Technol. 123, 278–287 (2000)Hutchings, I.: Tribology: friction and wear of engineering materials. Mater. Des. 13, 187 (1992)Ahn, J., Hwang, B., Song, E.P., Lee, S., Kim, N.J.: Correlation of microstructure and wear resistance of Al2O3–TiO2 coatings plasma sprayed with nanopowders. Metall. Mater. Trans. A 37, 1851–1860 (2006)Erickson, L.C., Hawthorne, H.M., Troczynski, T.: Correlations between microstructural parameters, micromechanical properties and wear resistance of plasma sprayed ceramic coatings. Wear 250, 569–575 (2001)Song, E.P., Ahn, J., Lee, S., Kim, N.J.: Microstructure and wear resistance of nanostructured Al2O3–8 wt%TiO2 coatings plasma-sprayed with nanopowders. Surf. Coat. Technol. 201, 1309–1315 (2006)Tucker Jr., R.C.: ASM Handbook Volume 5A: Thermal Spray Technology. ASM International, Materials Park (2013)Stachowiack, G.W., Batchelor, A.: Engineering Tribology Handbook. Elsevier-Butterworth-Heineman: Oxford (2005)Fischer, T.E., Zhu, Z., Kim, H., Shin, D.S.: Genesis and role of wear debris in sliding wear of ceramics. Wear 245, 53–60 (2000)Lima, R.S., Moureau, C., Marple, B.R.: HVOF-sprayed coatings engineered from mixtures of nanostructured and submicron Al2O3–TiO2 powders: an enhanced wear performance. J. Therm. Spray Technol. 16, 866 (2007

    The Development of Criminal Style in Adolescence and Young Adulthood: Separating the Lemmings from the Loners

    Get PDF
    Despite broad consensus that most juvenile crimes are committed with peers, many questions regarding developmental and individual differences in criminal style (i.e., co-offending vs. solo offending) remain unanswered. Using prospective 3-year longitudinal data from 937 14- to 17-year-old serious male offenders, the present study investigates whether youths tend to offend alone, in groups, or a combination of the two; whether these patterns change with age; and whether youths who engage in a particular style share distinguishing characteristics. Trajectory analyses examining criminal styles over age revealed that, while most youth evinced both types of offending, two distinct groups emerged: an increasingly solo offender trajectory (83%); and a mixed style offender trajectory (17%). Alternate analyses revealed (5.5%) exclusively solo offenders (i.e., only committed solo offenses over 3 years). There were no significant differences between groups in individuals’ reported number of friends, quality of friendships, or extraversion. However, the increasingly solo and exclusively solo offenders reported more psychosocial maturity, lower rates of anxiety, fewer psychopathic traits, less gang involvement and less self reported offending than mixed style offenders. Findings suggest that increasingly and exclusively solo offenders are not loners, as they are sometimes portrayed, and that exclusively solo offending during adolescence, while rare and previously misunderstood, may not be a risk factor in and of itself

    Novel Strains of Mice Deficient for the Vesicular Acetylcholine Transporter: Insights on Transcriptional Regulation and Control of Locomotor Behavior

    Get PDF
    Defining the contribution of acetylcholine to specific behaviors has been challenging, mainly because of the difficulty in generating suitable animal models of cholinergic dysfunction. We have recently shown that, by targeting the vesicular acetylcholine transporter (VAChT) gene, it is possible to generate genetically modified mice with cholinergic deficiency. Here we describe novel VAChT mutant lines. VAChT gene is embedded within the first intron of the choline acetyltransferase (ChAT) gene, which provides a unique arrangement and regulation for these two genes. We generated a VAChT allele that is flanked by loxP sequences and carries the resistance cassette placed in a ChAT intronic region (FloxNeo allele). We show that mice with the FloxNeo allele exhibit differential VAChT expression in distinct neuronal populations. These mice show relatively intact VAChT expression in somatomotor cholinergic neurons, but pronounced decrease in other cholinergic neurons in the brain. VAChT mutant mice present preserved neuromuscular function, but altered brain cholinergic function and are hyperactive. Genetic removal of the resistance cassette rescues VAChT expression and the hyperactivity phenotype. These results suggest that release of ACh in the brain is normally required to “turn down” neuronal circuits controlling locomotion
    corecore