97 research outputs found

    Excitability and synaptic transmission in the enteric nervous system: Does diet play a role?

    Full text link
    © Springer International Publishing Switzerland 2016. Changes in diet are a challenge to the gastrointestinal tract which needs to alter its processing mechanisms to continue to process nutrients and maintain health. In particular, the enteric nervous system (ENS) needs to adapt its motor and secretory programs to deal with changes in nutrient type and load in order to optimise nutrient absorption. The nerve circuits in the gut are complex, and the numbers and types of neurons make recordings of specific cell types difficult, time-consuming, and prone to sampling errors. Nonetheless, traditional research methods like intracellular electrophysiological approaches have provided the basis for our understanding of the ENS circuitry. In particular, animal models of intestinal inflammation have shown us that we can document changes to neuronal excitability and synaptic transmission. Recent studies examining diet-induced changes to ENS programming have opted to use fast imaging techniques to reveal changes in neuron function. Advances in imaging techniques using voltage- or calcium-sensitive dyes to record neuronal activity promise to overcome many limitations inherent to electrophysiological approaches. Imaging techniques allow access to a wide range of ENS phenotypes and to the changes they undergo during dietary challenges. These sorts of studies have shown that dietary variation or obesity can change how the ENS processes information-in effect reprogramming the ENS. In this review, the data gathered from intracellular recordings will be compared with measurements made using imaging techniques in an effort to determine if the lessons learnt from inflammatory changes are relevant to the understanding of diet-induced reprogramming

    The role of diet in the aetiopathogenesis of inflammatory bowel disease

    Get PDF
    Crohn’s disease and ulcerative colitis, collectively known as IBD, are chronic inflammatory disorders of the gastrointestinal tract. Although the aetiopathogenesis of IBD is largely unknown, it is widely thought that diet has a crucial role in the development and progression of IBD. Indeed, epidemiological and genetic association studies have identified a number of promising dietary and genetic risk factors for IBD. These preliminary studies have led to major interest in investigating the complex interaction between diet, host genetics, the gut microbiota and immune function in the pathogenesis of IBD. In this Review, we discuss the recent epidemiological, gene–environment interaction, microbiome and animal studies that have explored the relationship between diet and the risk of IBD. In addition, we highlight the limitations of these prior studies, in part by explaining their contradictory findings, and review future directions

    Diet in irritable bowel syndrome

    Get PDF

    The impact of gastrointestinal symptoms and dermatological injuries on nutritional intake and hydration status during ultramarathon events

    Get PDF
    BACKGROUND: Debilitating gastrointestinal symptoms (GIS) and dermatological injuries (DI) are common during and after endurance events and have been linked to performance decrements, event withdrawal, and issues requiring medical attention. The study aimed to determine whether GIS and DI affect food and fluid intake, and nutritional and hydration status, of ultramarathon runners during multi-stage (MSUM) and 24-h continuous (24 h) ultramarathons. METHODS: Ad libitum food and fluid intakes of ultramarathon runners (MSUM n = 54; 24 h n = 22) were recorded throughout both events and analysed by dietary analysis software. Body mass and urinary ketones were determined, and blood samples were taken, before and immediately after running. A medical log was used to monitor symptoms and injuries throughout both events. RESULTS: GIS were reported by 85 and 73 % of ultramarathon runners throughout MSUM and 24 h, respectively. GIS during MSUM were associated with reduced total daily, during, and post-stage energy and macronutrient intakes (p < 0.05), whereas GIS during 24 h did not alter nutritional variables. Throughout the MSUM 89 % of ultramarathon runners reported DI. DI during MSUM were associated with reduced carbohydrate (p < 0.05) intake during running and protein intake post-stage (p < 0.05). DI during 24 h were low; thus, comparative analyses were not possible. Daily, during running, and post-stage energy, macronutrient and water intake variables were observed to be lower with severity of GIS and DI (p < 0.05) throughout the MSUM only. CONCLUSIONS: GIS during the MSUM, but not the 24 h, compromised nutritional intake. DI presence and severity also compromised nutrient intake during running and recovery in the MSUM

    Oral Serum-Derived Bovine Immunoglobulin/Protein Isolate Has Immunomodulatory Effects on the Colon of Mice that Spontaneously Develop Colitis

    Get PDF
    Dietary immunoglobulin concentrates prepared from animal plasma can modulate the immune response of gut-associated lymphoid tissue (GALT). Previous studies have revealed that supplementation with serum-derived bovine immunoglobulin/protein isolate (SBI) ameliorates colonic barrier alterations in the mdr1a-/- genetic mouse model of IBD. Here, we examine the effects of SBI on mucosal inflammation in mdr1a-/- mice that spontaneously develop colitis. Wild type (WT) mice and mice lacking the mdr1a gene (KO) were fed diets supplemented with either SBI (2% w/w) or milk proteins (Control diet), from day 21 (weaning) until day 56. Leucocytes in mesenteric lymph nodes (MLN) and in lamina propria were determined, as was mucosal cytokine production. Neutrophil recruitment and activation in MLN and lamina propria of KO mice were increased, but were significantly reduced in both by SBI supplementation (p < 0.05). The increased neutrophil recruitment and activation observed in KO mice correlated with increased colon oxidative stress (p < 0.05) and SBI supplementation reduced this variable (p < 0.05). The Tact/Treg lymphocyte ratios in MLN and lamina propria were also increased in KO animals, but SBI prevented these changes (both p < 0.05). In the colon of KO mice, there was an increased production of mucosal proinflammatory cytokines such as IL-2 (2-fold), IL-6 (26-fold) and IL-17 (19-fold), and of chemokines MIP-1β (4.5-fold) and MCP-1 (7.2-fold). These effects were significantly prevented by SBI (p < 0.05). SBI also significantly increased TGF-β secretion in the colon mucosa, suggesting a role of this anti-inflammatory cytokine in the modulation of GALT and the reduction of the severity of the inflammatory response during the onset of colitis

    Controversies and reality of the FODMAP diet for patients with irritable bowel syndrome.

    Get PDF
    Since its first trial showing evidence of efficacy for managing symptoms of irritable bowel syndrome, the fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAP) diet has been gaining popularity but not without criticism. Application of the diet has changed from a rigid list of "allowed" and "not allowed" foods to a structured program of initial FODMAP restriction followed by food reintroduction and finally personalization so that patients are empowered to adjust their diet themselves to achieve good predictability of symptoms. Safety concerns of the diet have centered around its initial elimination leading to compromise of nutritional and psychological health, but careful patient assessment and management, preferably through a FODMAP-trained dietitian, will reduce the risk of such negative health outcomes. Most negative attention for the FODMAP diet has been the notion that it will ruin the microbiota. Controlled studies have indicated that reducing FODMAP intake has no effects on bacterial diversity but will reduce total bacterial abundance, and higher FODMAP intakes will increase health-promoting bacteria, supporting the concept of the full FODMAP program, including attaining a minimal "maintenance" level of FODMAP restriction. This review addresses all these concerns in detail and how to overcome them, including the use of a "FODMAP-gentle" diet, describing restriction of a select few foods very concentrated in FODMAPs. This version of the diet is commonly applied in practice by experienced FODMAP-trained dietitians but is not clearly described in literature. Careful direction and assessment of response or nonresponse will decrease the risks of over-restriction and under-restriction of diet

    Editorial: defining a microbial signature to predict non-response to a FODMAP diet-a step closer or is it?

    No full text
    LINKED CONTENT This article is linked to Chumpitazi et al and Chumpitazi &amp; Shulman papers. To view these articles, visit https://doi.org/10.1111/apt.16024 and https://doi.org/10.1111/apt.1624
    corecore