49 research outputs found

    Spinal infection: state of the art and management algorithm

    Get PDF
    Spinal infection is a rare pathology although a concerning rising incidence has been observed in recent years. This increase might reflect a progressively more susceptible population but also the availability of increased diagnostic accuracy. Yet, even with improved diagnosis tools and procedures, the delay in diagnosis remains an important issue. This review aims to highlight the importance of a methodological attitude towards accurate and prompt diagnosis using an algorithm to aid on spinal infection management. METHODS: Appropriate literature on spinal infection was selected using databases from the US National Library of Medicine and the National Institutes of Health. RESULTS: Literature reveals that histopathological analysis of infected tissues is a paramount for diagnosis and must be performed routinely. Antibiotic therapy is transversal to both conservative and surgical approaches and must be initiated after etiological diagnosis. Indications for surgical treatment include neurological deficits or sepsis, spine instability and/or deformity, presence of epidural abscess and upon failure of conservative treatment. CONCLUSIONS: A methodological assessment could lead to diagnosis effectiveness of spinal infection. Towards this, we present a management algorithm based on literature findings

    ICT, Financial Sector Development and Financial Access

    Get PDF
    This study assesses the role of ICT (internet and mobile phone penetration) in complementing financial sector development (financial formalization and informalization) for financial access. The empirical evidence is based on generalized method of moments with 53 African countries for the period 2004–2011. The following findings are established from linkages between ICT, financial sector development and financial activity. First, the interaction between ICT and financial formalization (informalization) decreases (increases) financial activity. Second, with regard to net effects, the expected signs are established for the most part. In spite of the negative marginal effects from financial informalization, the overall net effects are positive. Third, the potentially appealing interaction between ICT and informalization produces positive thresholds that are within ranges. Policy implications are discussed in three main strands. They include implications for (i) mobile/internet banking, (ii) a quiet life and (iii) ICT in reducing information asymmetry and surplus liquidity

    The Fusion of Lipid and DNA Nanotechnology

    No full text
    Lipid membranes form the boundary of many biological compartments, including organelles and cells. Consisting of two leaflets of amphipathic molecules, the bilayer membrane forms an impermeable barrier to ions and small molecules. Controlled transport of molecules across lipid membranes is a fundamental biological process that is facilitated by a diverse range of membrane proteins, including ion-channels and pores. However, biological membranes and their associated proteins are challenging to experimentally characterize. These challenges have motivated recent advances in nanotechnology towards building and manipulating synthetic lipid systems. Liposomes—aqueous droplets enclosed by a bilayer membrane—can be synthesised in vitro and used as a synthetic model for the cell membrane. In DNA nanotechnology, DNA is used as programmable building material for self-assembling biocompatible nanostructures. DNA nanostructures can be functionalised with hydrophobic chemical modifications, which bind to or bridge lipid membranes. Here, we review approaches that combine techniques from lipid and DNA nanotechnology to engineer the topography, permeability, and surface interactions of membranes, and to direct the fusion and formation of liposomes. These approaches have been used to study the properties of membrane proteins, to build biosensors, and as a pathway towards assembling synthetic multicellular systems

    The Fusion of Lipid and DNA Nanotechnology

    No full text
    Lipid membranes form the boundary of many biological compartments, including organelles and cells. Consisting of two leaflets of amphipathic molecules, the bilayer membrane forms an impermeable barrier to ions and small molecules. Controlled transport of molecules across lipid membranes is a fundamental biological process that is facilitated by a diverse range of membrane proteins, including ion-channels and pores. However, biological membranes and their associated proteins are challenging to experimentally characterize. These challenges have motivated recent advances in nanotechnology towards building and manipulating synthetic lipid systems. Liposomes—aqueous droplets enclosed by a bilayer membrane—can be synthesised in vitro and used as a synthetic model for the cell membrane. In DNA nanotechnology, DNA is used as programmable building material for self-assembling biocompatible nanostructures. DNA nanostructures can be functionalised with hydrophobic chemical modifications, which bind to or bridge lipid membranes. Here, we review approaches that combine techniques from lipid and DNA nanotechnology to engineer the topography, permeability, and surface interactions of membranes, and to direct the fusion and formation of liposomes. These approaches have been used to study the properties of membrane proteins, to build biosensors, and as a pathway towards assembling synthetic multicellular systems.</jats:p

    Binding of DNA origami to lipids: maximising yield and switching via strand-displacement

    Full text link
    ABSTRACTLiposomes are widely used as synthetic analogues of cell membranes and for drug delivery. Lipid-binding DNA nanostructures can modify the shape, porosity and reactivity of liposomes, mediated by cholesterol-modifications. DNA nanostructures can also be designed to switch conformations by DNA strand displacement. However, the optimal conditions to facilitate stable, high-yield DNA-lipid binding while allowing controlled switching by strand-displacement are not known. Here we characterised the effect of cholesterol arrangement, DNA structure, buffer and lipid composition on DNA-lipid binding and strand displacement. We observed that binding was inhibited below pH 4, and above 200 mM NaCl or 40 mM MgCl2, was independent of lipid type, and increased with membrane cholesterol content. For simple motifs, binding yield was slightly higher for double-stranded DNA than single-stranded. For larger DNA origami tiles, 4 – 8 cholesterol modifications were optimal, while edge positions and longer spacers increased yield of lipid-binding. Strand displacement achieved controlled removal of DNA tiles from membranes, but was inhibited by overhang domains, which are used to prevent cholesterol aggregation. These findings provide design guidelines for integrating strand-displacement switching with lipid-binding DNA nanostructures. This paves the way for achieving dynamic control of membrane morphology, enabling broader applications in nanomedicine and biophysics.</jats:p
    corecore