663 research outputs found

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    A 5G mm-wave compact voltage-controlled oscillator in 0.25 µm pHEMT technology

    Get PDF
    A 5G mm-wave monolithic microwave integrated circuit (MMIC) voltage-controlled oscillator (VCO) is presented in this paper. It is designed on GaAs substrate and with 0.25 µm-pHEMT technology from UMS foundry and it is based on pHEMT varactors in order to achieve a very small chip size. A 0dBm-output power over the entire tuning range from 27.67 GHz to 28.91 GHz, a phase noise of -96.274 dBc/Hz and -116.24 dBc/Hz at 1 and 10 MHz offset frequency from the carrier respectively are obtained on simulation. A power consumption of 111 mW is obtained for a chip size of 0.268 mm2. According to our knowledge, this circuit occupies the smallest surface area compared to pHEMTs oscillators published in the literature

    28 GHz balanced pHEMT VCO with low phase noise and high output power performance for 5G mm-Wave systems

    Get PDF
    This paper presents the study and design of a balanced voltage controlled oscillator VCO for 5G wireless communication systems. This circuit is designed in monolithic microwave integrated circuit (MMIC) technology using PH15 process from UMS foundry. The VCO ensures an adequate tuning range by a single-ended pHEMT varactors configuration. The simulation results show that this circuit delivers a sinusoidal signal of output power around 9 dBm with a second harmonic rejection between 25.87 and 33.83 dB, the oscillation frequency varies between 26.46 and 28.90 GHz, the phase noise is -113.155 and -133.167 dBc/Hz respectively at 1 MHz and 10 MHz offset and the Figure of Merit is -181.06 dBc/Hz. The power consumed by the VCO is 122 mW. The oscillator layout with bias and RF output pads occupies an area of 0.515 mm2

    High rejection self-oscillating up-conversion mixer for fifth-generation communications

    Get PDF
    This paper presents the design of a pseudomorphic high electron mobility transistor (pHEMT) self-oscillating mixer (SOM) for millimeter wave wireless communication systems. The 180° out-of-phase technique is chosen to both improve the desired lower sideband (LSB) signal and to achieve a satisfactory rejection of the unwanted signals (LO, USB and IF). This SOM is designed on the PH15 process of UMS foundry which is based on 0.15 µm GaAs pHEMT. The signal is up-converted from 2 GHz-IF frequency to 26 GHz-LSB frequency, using an autogenerated 28 GHz-LO signal. Simulations were performed using the advanced design system (ADS) workflow. They show 6.4 dB conversion gain and a signal rejection rate of 29.7 dB for the unwanted USB signal. the chip size is 3.6 mm2

    Gilbert cell down-conversion mixer for THz wireless communication with passive baluns

    Get PDF
    This article presents the design of an active down-conversion mixer for the superheterodyne receiver system for 6G wireless communications. This mixer is developed based on the Gilbert cell in the terahertz frequency band, using the PH15 transistor from United Monolithic Semiconductors (UMS) Foundry in monolithic microwave integrated circuit (MMIC) technology. We used the charge injection method to increase our mixer’s conversion gain. In addition, we integrated a buffer stage at the mixer outputs to facilitate impedance matching and improve linearity. The power dividers used in this chapter are based on transmission lines from Agilent's advanced design system (ADS) tool, connected to the input and output ports of the circuit. The proposed architecture offers a high conversion gain of 15.2 dB, with a low local oscillator (LO) power of 0 dBm, a low double sideband (DSB) noise figure (NF) of around 7.1 dB, a 1\ dB compression point of -16 dBm, and good radio frequency (RF)-LO port isolation of 63.2 dB, at a RF of 0.14 THz

    TRAIP promotes DNA damage response during genome replication and is mutated in primordial dwarfism.

    Get PDF
    DNA lesions encountered by replicative polymerases threaten genome stability and cell cycle progression. Here we report the identification of mutations in TRAIP, encoding an E3 RING ubiquitin ligase, in patients with microcephalic primordial dwarfism. We establish that TRAIP relocalizes to sites of DNA damage, where it is required for optimal phosphorylation of H2AX and RPA2 during S-phase in response to ultraviolet (UV) irradiation, as well as fork progression through UV-induced DNA lesions. TRAIP is necessary for efficient cell cycle progression and mutations in TRAIP therefore limit cellular proliferation, providing a potential mechanism for microcephaly and dwarfism phenotypes. Human genetics thus identifies TRAIP as a component of the DNA damage response to replication-blocking DNA lesions.This work was supported by funding from the Medical Research Council and the European Research Council (ERC, 281847) (A.P.J.), the Lister Institute for Preventative Medicine (A.P.J. and G.S.S.), Medical Research Scotland (L.S.B.), German Federal Ministry of Education and Research (BMBF, 01GM1404) and E-RARE network EuroMicro (B.W), Wellcome Trust (M. Hurles), CMMC (P.N.), Cancer Research UK (C17183/A13030) (G.S.S. and M.R.H), Swiss National Science Foundation (P2ZHP3_158709) (O.M.), AIRC (12710) and ERC/EU FP7 (CIG_303806) (S.S.), Cancer Research UK (C6/A11224) and ERC/EU FP7 (HEALTH-F2- 2010-259893) (A.N.B. and S.P.J.).This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/ng.345

    Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of s=7  TeV \sqrt{s}=7\;\mathrm{TeV} proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan β < 40

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentreofmassframeisusedtosuppressthelargemultijetbackground.ThecrosssectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Study of hadronic event-shape variables in multijet final states in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe
    corecore