21,484 research outputs found
Fast wavelength-tunable ultra-violet laser source for confocal Fura-2AM imaging
We report a novel wavelength-flexible laser source for three-dimensional ultra-violet imaging. Based on supercontinuum generation in photonic crystal fiber, the resultant broadband laser source extended from A = 331 nm into the visible region of the spectrum. Using an electronically-controlled filter wheel and filter set with a response time of approximately 50 ins, rapid wavelength selection was performed. The described scheme is capable of exciting the current range of ultra-violet-excited fluorophores and the simple and rapid wavelength control also provides a new approach for fast ratiometric imaging of Fura-2AM, facilitating an easy method of performing quantitative intracellular calcium concentration measurements
Boundary Operators in Quantum Field Theory
The fundamental laws of physics can be derived from the requirement of
invariance under suitable classes of transformations on the one hand, and from
the need for a well-posed mathematical theory on the other hand. As a part of
this programme, the present paper shows under which conditions the introduction
of pseudo-differential boundary operators in one-loop Euclidean quantum gravity
is compatible both with their invariance under infinitesimal diffeomorphisms
and with the requirement of a strongly elliptic theory. Suitable assumptions on
the kernel of the boundary operator make it therefore possible to overcome
problems resulting from the choice of purely local boundary conditions.Comment: 23 pages, plain Tex. The revised version contains a new section, and
the presentation has been improve
Radiation Induced Fermion Resonance
The Dirac equation is solved for two novel terms which describe the
interaction energy between the half integral spin of a fermion and the
classical, circularly polarized, electromagnetic field. A simple experiment is
suggested to test the new terms and the existence of radiation induced fermion
resonance.Comment: latex, 4 pages, no figure
Baryon asymmetry in the Universe resulting from Lorentz violation
We analyze the phenomenological consequences of a Lorentz violating
energy-momentum dispersion relation in order to give a simple explanation for
the baryon asymmetry in the Universe. By assuming very few hypotheses, we
propose a straightforward mechanism for generating the observed
matter-antimatter asymmetry which entails a Lorentz-breakdown energy scale of
the order of the Greisen-Zatsepin-Kuzmin cut-off.Comment: 7 page
Fermi, Majorana and the statistical model of atoms
We give an account of the appearance and first developments of the
statistical model of atoms proposed by Thomas and Fermi, focusing on the main
results achieved by Fermi and his group in Rome. Particular attention is
addressed to the unknown contribution to this subject by Majorana, anticipating
some important results reached later by leading physicists.Comment: Latex, 16 pages, 2 figure
Spectral asymptotics of Euclidean quantum gravity with diff-invariant boundary conditions
A general method is known to exist for studying Abelian and non-Abelian gauge
theories, as well as Euclidean quantum gravity, at one-loop level on manifolds
with boundary. In the latter case, boundary conditions on metric perturbations
h can be chosen to be completely invariant under infinitesimal diffeomorphisms,
to preserve the invariance group of the theory and BRST symmetry. In the de
Donder gauge, however, the resulting boundary-value problem for the Laplace
type operator acting on h is known to be self-adjoint but not strongly
elliptic. The latter is a technical condition ensuring that a unique smooth
solution of the boundary-value problem exists, which implies, in turn, that the
global heat-kernel asymptotics yielding one-loop divergences and one-loop
effective action actually exists. The present paper shows that, on the
Euclidean four-ball, only the scalar part of perturbative modes for quantum
gravity are affected by the lack of strong ellipticity. Further evidence for
lack of strong ellipticity, from an analytic point of view, is therefore
obtained. Interestingly, three sectors of the scalar-perturbation problem
remain elliptic, while lack of strong ellipticity is confined to the remaining
fourth sector. The integral representation of the resulting zeta-function
asymptotics is also obtained; this remains regular at the origin by virtue of a
spectral identity here obtained for the first time.Comment: 25 pages, Revtex-4. Misprints in Eqs. (5.11), (5.14), (5.16) have
been correcte
A generalization of the Ginzburg-Landau theory to p-wave superconductors
We succeed to build up a straightforward theoretical model for spin-triplet
p-wave superconductors by introducing in Ginzburg-Landau theory a second order
parameter and a suitable interaction between the two mean fields.Comment: RevTeX, 4 pages, no figure
Type IIB orientifolds with discrete torsion
We consider compact four-dimensional type IIB
orientifolds, for certain values of and . We allow the additional
feature of discrete torsion and discuss the modification of the consistency
conditions arising from tadpole cancellation. We point out the differences
between the cases with and without discrete torsion.Comment: 4 pages LaTeX. Write-up of talk at DPF2000, Columbus, OH, August 10,
2000. References adde
- …
