713 research outputs found

    Position statement and best practice recommendations on the imaging use of ultrasound from the European Society of Radiology ultrasound subcommittee

    Get PDF
    Publisher Copyright: © 2020, The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.This document summarises best practice recommendations for medical imaging use of ultrasound in Europe, representing the agreed consensus of experts from the Ultrasound Subcommittee of the European Society of Radiology (ESR), the European Union of Medical Specialists (UEMS) Section of Radiology, and the European Federation of Societies for Ultrasound in Medicine and Biology. Recommendations are given for education and training, equipment and its maintenance, documentation, hygiene and infection prevention, and medico-legal issues.Peer reviewe

    Patient Safety in Medical Imaging: a joint paper of the European Society of Radiology (ESR) and the European Federation of Radiographer Societies (EFRS)

    Get PDF
    The fundamental professional roles of radiographers and radiologists are focused on providing benefit to patients with our skills, while maintaining their safety at all times. There are numerous patient safety issues in radiology which must be considered. These encompass: protection from direct harm arising from the techniques and technologies we use; ensuring physical and psychological well-being of patients while under our care; maintaining the highest possible quality of service provision; and protecting the staff to ensure they can deliver safe services. This paper summarises the key categories of safety issues in the provision of radiology services, from the joint perspectives of radiographers and radiologists, and provides references for further reading in all major relevant areas

    Quality and curation of medical images and data

    Get PDF
    With the increased collection of medical data in digital format the use and reuse of this data is also increasing. This introduces new challenges in the selection, de-identification, storage and handling of the imaging data. When building large data collections for use in training and validation of machine learning, merely collecting a lot of data is not enough. It is essential that the quality of the data is be sufficient for the intended application in order to obtain valid results. This chapter will discuss the issue of data quality by looking at the process of curation of medical images and other related data and the different aspects that are involved in this when moving forward in the era of AI

    A surveillance sector review applied to infectious diseases at a country level

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The new International Health Regulations (IHR) require World Health Organization (WHO) member states to assess their core capacity for surveillance. Such reviews also have the potential to identify important surveillance gaps, improve the organisation of disparate surveillance systems and to focus attention on <it>upstream </it>hazards, determinants and interventions.</p> <p>Methods</p> <p>We developed a <it>surveillance sector review </it>method for evaluating all of the surveillance systems and related activities across a sector, in this case those concerned with infectious diseases in New Zealand. The first stage was a systematic description of these surveillance systems using a newly developed framework and classification system. Key informant interviews were conducted to validate the available information on the systems identified.</p> <p>Results</p> <p>We identified 91 surveillance systems and related activities in the 12 coherent categories of infectious diseases examined. The majority (n = 40 or 44%) of these were disease surveillance systems. They covered all categories, particularly for more severe outcomes including those resulting in death or hospitalisations. Except for some notifiable diseases and influenza, surveillance of less severe, but important infectious diseases occurring in the community was largely absent. There were 31 systems (34%) for surveillance of <it>upstream </it>infectious disease hazards, including risk and protective factors. This area tended to have many potential gaps and lack integration, partly because such systems were operated by a range of different agencies, often outside the health sector. There were fewer surveillance systems for determinants, including population size and characteristics (n = 9), and interventions (n = 11).</p> <p>Conclusions</p> <p>It was possible to create and populate a workable framework for describing all the infectious diseases surveillance systems and related activities in a single developed country and to identify potential surveillance sector gaps. This is the first stage in a review process that will lead to identification of priorities for surveillance sector development.</p

    Core curriculum for medical physicists in radiology. Recommendations from an EFOMP/ESR working group

    Get PDF
    Some years ago it was decided that a European curriculum should be developed for medical physicists professionally engaged in the support of clinical diagnostic imaging departments. With this in mind, EFOMP (European Federation of Organisations for Medical Physics) in association with ESR (European Society of Radiology) nominated an expert working group. This curriculum is now to hand. The curriculum is intended to promote best patient care in radiology departments through the harmonization of education and training of medical physicists to a high standard in diagnostic radiology. It is recommended that a medical physicist working in a radiology department should have an advanced level of professional expertise in X-ray imaging, and additionally, depending on local availability, should acquire knowledge and competencies in overseeing ultrasound imaging, nuclear medicine, and MRI technology. By demonstrating training to a standardized curriculum, medical physicists throughout Europe will enhance their mobility, while maintaining local high standards of medical physics expertise. This document also provides the basis for improved implementation of articles in the European medical exposure directives related to the medical physics expert. The curriculum is divided into three main sections: The first deals with general competencies in the principles of medical physics. The second section describes specific knowledge and skills required for a medical physicist (medical physics expert) to operate clinically in a department of diagnostic radiology. The final section outlines research skills that are also considered to be necessary and appropriate competencies in a career as medical physicist

    Competency-based (CanMEDS) residency training programme in radiology: systematic design procedure, curriculum and success factors

    Get PDF
    Based on the CanMEDS framework and the European Training Charter for Clinical Radiology a new radiology curriculum was designed in the Netherlands. Both the development process and the resulting new curriculum are presented in this paper. The new curriculum was developed according to four systematic design principles: discursiveness, hierarchical decomposition, systematic variation and satisficing (satisficing is different from satisfying; in this context, satisficing means searching for an acceptable solution instead of searching for an optimal solution). The new curriculum is organ based with integration of radiological diagnostic techniques, comprises a uniform national common trunk followed by a 2-year subspecialisation, is competency outcome based with appropriate assessment tools and techniques, and is based on regional collaboration among radiology departments. The application of the systematic design principles proved successful in producing a new curriculum approved by all authorities. The principles led to a structured, yet flexible, development process in which creative solutions could be generated and adopters (programme directors, supervisors and residents) were highly involved. Further research is needed to empirically test the components of the new curriculum
    corecore