840 research outputs found

    Relationship between single-particle excitation and spin excitation at the Mott Transition

    Full text link
    An intuitive interpretation of the relationship between the dispersion relation of the single-particle excitation in a metal and that of the spin excitation in a Mott insulator is presented, based on the results for the one- and two-dimensional Hubbard models obtained by using the Bethe ansatz, dynamical density-matrix renormalization group method, and cluster perturbation theory. The dispersion relation of the spin excitation in the Mott insulator is naturally constructed from that of the single-particle excitation in the zero-doping limit in both one- and two-dimensional Hubbard models, which allows us to interpret the doping-induced states as the states that lose charge character toward the Mott transition. The characteristic feature of the Mott transition is contrasted with the feature of a Fermi liquid and that of the transition between a band insulator and a metal.Comment: 6 pages, 2 figures, to appear in JPS Conf. Pro

    Applications of Massive Integrable Quantum Field Theories to Problems in Condensed Matter Physics

    Full text link
    We review applications of the sine-Gordon model, the O(3) non-linear sigma model, the U(1) Thirring model, and the O(N) Gross--Neveu model to quasi one-dimensional quantum magnets, Mott insulators, and carbon nanotubes. We focus upon the determination of dynamical response functions for these problems. These quantities are computed by means of form factor expansions of quantum correlation functions in integrable quantum field theories. This approach is reviewed here in some detail.Comment: 150 pages, 35 figures, published in the I. Kogan Memorial Volume by World Scientifi

    Effects of thermal phase fluctuations in a 2D superconductor: an exact result for the spectral function

    Full text link
    We consider the single particle spectral function for a two-dimensional clean superconductor in a regime of strong critical thermal phase fluctuations. In the limit where the maximum of the superconducting gap is much smaller than the Fermi energy we obtain an exact expression for the spectral function integrated over the momentum component perpendicular to the Fermi surface.Comment: 4 pages, 3 figures. References added, figures improve

    Spectral Properties near the Mott Transition in the One-Dimensional Hubbard Model

    Full text link
    Single-particle spectral properties near the Mott transition in the one-dimensional Hubbard model are investigated by using the dynamical density-matrix renormalization group method and the Bethe ansatz. The pseudogap, hole-pocket behavior, spectral-weight transfer, and upper Hubbard band are explained in terms of spinons, holons, antiholons, and doublons. The Mott transition is characterized by the emergence of a gapless mode whose dispersion relation extends up to the order of hopping t (spin exchange J) in the weak (strong) interaction regime caused by infinitesimal doping.Comment: 4 pages, 2 figure

    On the origin of the Fermi arc phenomena in the underdoped cuprates: signature of KT-type superconducting transition

    Full text link
    We study the effect of thermal phase fluctuation on the electron spectral function A(k,ω)A(k,\omega) in a d-wave superconductor with Monte Carlo simulation. The phase degree of freedom is modeled by a XY-type model with build-in d-wave character. We find a ridge-like structure emerges abruptly on the underlying Fermi surface in A(k,ω=0)A(k,\omega=0) above the KT-transition temperature of the XY model. Such a ridge-like structure, which shares the same characters with the Fermi arc observed in the pseudogap phase of the underdoped cuprates, is found to be caused by the vortex-like phase fluctuation of the XY model.Comment: 5 page

    Correlation functions of the one-dimensional attractive Bose gas

    Full text link
    The zero-temperature correlation functions of the one-dimensional attractive Bose gas with delta-function interaction are calculated analytically for any value of the interaction parameter and number of particles, directly from the integrability of the model. We point out a number of interesting features, including zero recoil energy for large number of particles, analogous to a M\"ossbauer effect.Comment: 4 pages, 2 figure

    A Numerical Renormalization Group for Continuum One-Dimensional Systems

    Full text link
    We present a renormalization group (RG) procedure which works naturally on a wide class of interacting one-dimension models based on perturbed (possibly strongly) continuum conformal and integrable models. This procedure integrates Kenneth Wilson's numerical renormalization group with Al. B. Zamolodchikov's truncated conformal spectrum approach. Key to the method is that such theories provide a set of completely understood eigenstates for which matrix elements can be exactly computed. In this procedure the RG flow of physical observables can be studied both numerically and analytically. To demonstrate the approach, we study the spectrum of a pair of coupled quantum Ising chains and correlation functions in a single quantum Ising chain in the presence of a magnetic field.Comment: 4 pages, 4 figure

    Pairing states of a polarized Fermi gas trapped in a one-dimensional optical lattice

    Full text link
    We study the properties of a one-dimensional (1D) gas of fermions trapped in a lattice by means of the density matrix renormalization group method, focusing on the case of unequal spin populations, and strong attractive interaction. In the low density regime, the system phase-separates into a well defined superconducting core and a fully polarized metallic cloud surrounding it. We argue that the superconducting phase corresponds to a 1D analogue of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, with a quasi-condensate of tightly bound bosonic pairs with a finite center-of-mass momentum that scales linearly with the magnetization. In the large density limit, the system allows for four phases: in the core, we either find a Fock state of localized pairs or a metallic shell with free spin-down fermions moving in a fully filled background of spin-up fermions. As the magnetization increases, the Fock state disappears to give room for a metallic phase, with a partially polarized superconducting FFLO shell and a fully polarized metallic cloud surrounding the core.Comment: 4 pages, 5 fig

    Superconductivity generated by coupling to a Cooperon in a 2-dimensional array of 4-leg Hubbard ladders

    Full text link
    Starting from an array of four-leg Hubbard ladders weakly doped away from half-filling and weakly coupled by inter-ladder tunneling, we derive an effective low energy model which contains a partially truncated Fermi surface and a well defined Cooperon excitation formed by a bound pair of holes. An attractive interaction in the Cooper channel is generated on the Fermi surface through virtual scattering into the Cooperon state. Although the model is derived in the weak coupling limit of a four-leg ladder array, an examination of exact results on finite clusters for the strong coupling t-J model suggests the essential features are also present for a strong coupling Hubbard model on a square lattice near half-filling.Comment: 20 pages, 4 figure

    Eight state supersymmetric UU model of strongly correlated fermions

    Get PDF
    An integrable eight state supersymmtric UU model is proposed, which is a fermion model with correlated single-particle and pair hoppings as well as uncorrelated triple-particle hopping. It has an gl(31)gl(3|1) supersymmetry and contains one symmetry-preserving free parameter. The model is solved and the Bethe ansatz equations are obtained.Comment: Some cosmetic changes; to appear in Phys. Rev.
    corecore