1,823 research outputs found
Evaluating multisite rCBV consistency from DSC-MRI imaging protocols and postprocessing software across the NCI Quantitative Imaging Network sites using a digital reference object (DRO)
Fundamental Aspects of the ISM Fractality
The ubiquitous clumpy state of the ISM raises a fundamental and open problem
of physics, which is the correct statistical treatment of systems dominated by
long range interactions. A simple solvable hierarchical model is presented
which explains why systems dominated by gravity prefer to adopt a fractal
dimension around 2 or less, like the cold ISM and large scale structures. This
has direct relation with the general transparency, or blackness, of the
Universe.Comment: 6 pages, LaTeX2e, crckapb macro, no figure, uuencoded compressed tar
file. To be published in the proceeedings of the "Dust-Morphology"
conference, Johannesburg, 22-26 January, 1996, D. Block (ed.), (Kluwer
Dordrecht
Finding a way: long-term care homes to support dementia
An ageing demographic has increased the number of people with dementia. Although dementia is commonly
associated with memory loss, other early symptoms include difficulty with wayfinding. Dementia alters visuo-spatial
perception and the processes used to interpret the physical environment. The role of the design of the physical
environment for people with dementia has gained increased recognition. Despite this, design for dementia is often
overlooked, focusing on issues relating to physical impairment. This paper presents the results of a PhD study and aims to examine the role of the design of the physical environment in supporting wayfinding for people with dementia living in long-term care settings in Northern Ireland. Mixed methods combined the observation of wayfinding walks and conversational style interviews to elicit perspectives and experiences of residents with
dementia. The findings aim to promote well-being for those with dementia living in long-term care settings
Built-in and induced polarization across LaAlO/SrTiO heterojunctions
Ionic crystals terminated at oppositely charged polar surfaces are inherently
unstable and expected to undergo surface reconstructions to maintain
electrostatic stability. Essentially, an electric field that arises between
oppositely charged atomic planes gives rise to a built-in potential that
diverges with thickness. In ultra thin film form however the polar crystals are
expected to remain stable without necessitating surface reconstructions, yet
the built-in potential has eluded observation. Here we present evidence of a
built-in potential across polar \lao ~thin films grown on \sto ~substrates, a
system well known for the electron gas that forms at the interface. By
performing electron tunneling measurements between the electron gas and a
metallic gate on \lao ~we measure a built-in electric field across \lao ~of 93
meV/\AA. Additionally, capacitance measurements reveal the presence of an
induced dipole moment near the interface in \sto, illuminating a unique
property of \sto ~substrates. We forsee use of the ionic built-in potential as
an additional tuning parameter in both existing and novel device architectures,
especially as atomic control of oxide interfaces gains widespread momentum.Comment: 6 pages, 4 figures. Submitted to Nature physics on May 1st, 201
History-sensitive versus future-sensitive approaches to security in distributed systems
We consider the use of aspect-oriented techniques as a flexible way to deal
with security policies in distributed systems. Recent work suggests to use
aspects for analysing the future behaviour of programs and to make access
control decisions based on this; this gives the flavour of dealing with
information flow rather than mere access control. We show in this paper that it
is beneficial to augment this approach with history-based components as is the
traditional approach in reference monitor-based approaches to mandatory access
control. Our developments are performed in an aspect-oriented coordination
language aiming to describe the Bell-LaPadula policy as elegantly as possible.
Furthermore, the resulting language has the capability of combining both
history- and future-sensitive policies, providing even more flexibility and
power.Comment: In Proceedings ICE 2010, arXiv:1010.530
The disruption of proteostasis in neurodegenerative diseases
Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio
The 10th Biennial Hatter Cardiovascular Institute workshop: cellular protection—evaluating new directions in the setting of myocardial infarction, ischaemic stroke, and cardio-oncology
Due to its poor capacity for regeneration, the heart is particularly sensitive to the loss of contractile cardiomyocytes. The onslaught of damage caused by ischaemia and reperfusion, occurring during an acute myocardial infarction and the subsequent reperfusion therapy, can wipe out upwards of a billion cardiomyocytes. A similar program of cell death can cause the irreversible loss of neurons in ischaemic stroke. Similar pathways of lethal cell injury can contribute to other pathologies such as left ventricular dysfunction and heart failure caused by cancer therapy. Consequently, strategies designed to protect the heart from lethal cell injury have the potential to be applicable across all three pathologies. The investigators meeting at the 10th Hatter Cardiovascular Institute workshop examined the parallels between ST-segment elevation myocardial infarction (STEMI), ischaemic stroke, and other pathologies that cause the loss of cardiomyocytes including cancer therapeutic cardiotoxicity. They examined the prospects for protection by remote ischaemic conditioning (RIC) in each scenario, and evaluated impasses and novel opportunities for cellular protection, with the future landscape for RIC in the clinical setting to be determined by the outcome of the large ERIC-PPCI/CONDI2 study. It was agreed that the way forward must include measures to improve experimental methodologies, such that they better reflect the clinical scenario and to judiciously select combinations of therapies targeting specific pathways of cellular death and injury
The narrative self, distributed memory, and evocative objects
In this article, I outline various ways in which artifacts are interwoven with autobiographical memory systems and conceptualize what this implies for the self. I first sketch the narrative approach to the self, arguing that who we are as persons is essentially our (unfolding) life story, which, in turn, determines our present beliefs and desires, but also directs our future goals and actions. I then argue that our autobiographical memory is partly anchored in our embodied interactions with an ecology of artifacts in our environment. Lifelogs, photos, videos, journals, diaries, souvenirs, jewelry, books, works of art, and many other meaningful objects trigger and sometimes constitute emotionally-laden autobiographical memories. Autobiographical memory is thus distributed across embodied agents and various environmental structures. To defend this claim, I draw on and integrate distributed cognition theory and empirical research in human-technology interaction. Based on this, I conclude that the self is neither defined by psychological states realized by the brain nor by biological states realized by the organism, but should be seen as a distributed and relational construct
(Micro)evolutionary changes and the evolutionary potential of bird migration
Seasonal migration is the yearly long-distance movement of individuals between their breeding and wintering grounds. Individuals from nearly every animal group exhibit this behavior, but probably the most iconic migration is carried out by birds, from the classic V-shape formation of geese on migration to the amazing nonstop long-distance flights undertaken by Arctic Terns Sterna paradisaea. In this chapter, we discuss how seasonal migration has shaped the field of evolution. First, this behavior is known to turn on and off quite rapidly, but controversy remains concerning where this behavior first evolved geographically and whether the ancestral state was sedentary or migratory (Fig. 7.1d, e). We review recent work using new analytical techniques to provide insight into this topic. Second, it is widely accepted that there is a large genetic basis to this trait, especially in groups like songbirds that migrate alone and at night precluding any opportunity for learning. Key hypotheses on this topic include shared genetic variation used by different populations to migrate and only few genes being involved in its control. We summarize recent work using new techniques for both phenotype and genotype characterization to evaluate and challenge these hypotheses. Finally, one topic that has received less attention is the role these differences in migratory phenotype could play in the process of speciation. Specifically, many populations breed next to one another but take drastically different routes on migration (Fig. 7.2). This difference could play an important role in reducing gene flow between populations, but our inability to track most birds on migration has so far precluded evaluations of this hypothesis. The advent of new tracking techniques means we can track many more birds with increasing accuracy on migration, and this work has provided important insight into migration's role in speciation that we will review here
Neutrino Interactions In Oscillation Experiments
We calculate neutrino induced cross-sections relevant for oscillation
experiments, including the -lepton threshold for quasi-elastic, resonance
and deep inelastic scattering. In addition to threshold effects, we include
nuclear corrections for heavy targets which are moderate for quasi-elastic and
large for single pion production. Nuclear effects for deep inelastic reactions
are small. We present cross sections together with their nuclear corrections
for various channels which are useful for interpreting the experimental results
and for determining parameters of the neutrino sector..Comment: 24 pages, 18 figure
- …
