5 research outputs found
ADAMTS1 alters blood vessel morphology and TSP1 levels in LNCaP and LNCaP-19 prostate tumors
<p>Abstract</p> <p>Background</p> <p>Decreased expression of the angiogenesis inhibitor ADAMTS1 (ADAM metallopeptidase with thrombospondin type 1 motif, 1) has previously been reported during prostate cancer progression. The aim of this study was to investigate the function of ADAMTS1 in prostate tumors.</p> <p>Methods</p> <p>ADAMTS1 was downregulated by shRNA technology in the human prostate cancer cell line LNCaP (androgen-dependent), originally expressing ADAMTS1, and was upregulated by transfection in its subline LNCaP-19 (androgen-independent), expressing low levels of ADAMTS1. Cells were implanted subcutaneously in nude mice and tumor growth, microvessel density (MVD), blood vessel morphology, pericyte coverage and thrombospondin 1 (TSP1) were studied in the tumor xenografts.</p> <p>Results</p> <p>Modified expression of ADAMTS1 resulted in altered blood vessel morphology in the tumors. Low expression levels of ADAMTS1 were associated with small diameter blood vessels both in LNCaP and LNCaP-19 tumors, while high levels of ADAMTS1 were associated with larger vessels. In addition, TSP1 levels in the tumor xenografts were inversely related to ADAMTS1 expression. MVD and pericyte coverage were not affected. Moreover, upregulation of ADAMTS1 inhibited tumor growth of LNCaP-19, as evidenced by delayed tumor establishment. In contrast, downregulation of ADAMTS1 in LNCaP resulted in reduced tumor growth rate.</p> <p>Conclusions</p> <p>The present study demonstrates that ADAMTS1 is an important regulatory factor of angiogenesis and tumor growth in prostate tumors, where modified ADAMTS1 expression resulted in markedly changed blood vessel morphology, possibly related to altered TSP1 levels.</p
Serine Protease PRSS23 Is Upregulated by Estrogen Receptor α and Associated with Proliferation of Breast Cancer Cells
Serine protease PRSS23 is a newly discovered protein that has been associated with tumor progression in various types of cancers. Interestingly, PRSS23 is coexpressed with estrogen receptor α (ERα), which is a prominent biomarker and therapeutic target for human breast cancer. Estrogen signaling through ERα is also known to affect cell proliferation, apoptosis, and survival, which promotes tumorigenesis by regulating the production of numerous downstream effector proteins
Meta-analysis of several gene lists for distinct types of cancer: A simple way to reveal common prognostic markers
BACKGROUND: Although prognostic biomarkers specific for particular cancers have been discovered, microarray analysis of gene expression profiles, supported by integrative analysis algorithms, helps to identify common factors in molecular oncology. Similarities of Ordered Gene Lists (SOGL) is a recently proposed approach to meta-analysis suitable for identifying features shared by two data sets. Here we extend the idea of SOGL to the detection of significant prognostic marker genes from microarrays of multiple data sets. Three data sets for leukemia and the other six for different solid tumors are used to demonstrate our method, using established statistical techniques. RESULTS: We describe a set of significantly similar ordered gene lists, representing outcome comparisons for distinct types of cancer. This kind of similarity could improve the diagnostic accuracies of individual studies when SOGL is incorporated into the support vector machine algorithm. In particular, we investigate the similarities among three ordered gene lists pertaining to mesothelioma survival, prostate recurrence and glioma survival. The similarity-driving genes are related to the outcomes of patients with lung cancer with a hazard ratio of 4.47 (p = 0.035). Many of these genes are involved in breakdown of EMC proteins regulating angiogenesis, and may be used for further research on prognostic markers and molecular targets of gene therapy for cancers. CONCLUSION: The proposed method and its application show the potential of such meta-analyses in clinical studies of gene expression profiles
Kinetics of ascorbic acid loss during hot water blanching of fluted pumpkin (Telfairia occidentalis) leaves
Plant biometric characterization and leaf micromorphometry of Talinum triangulare (Jacq.) Willd cultivated under shade
"Talinum triangulare (Jacq.) Willd, known as Ceylon spinach, Surinam purslane, or waterleaf, is cultivated for medicinal and food purposes. Among environmental factors, light is an important regulator of primary production, contributing to plant growth. However, the success of each plant species depends on its morphoanatomical responses to light. The aim of this study was to determine whether T. triangulare leaf micromorphometry is affected when grown in full sun and under shade, and if so, which plant biometric variables are affected. T. triangulare cultivation was tested in beds arranged in blocks under shade levels of 0, 18, 30, and 50%. Each bed was considered a basic experimental unit, totaling four replications per treatment. Plant height, stem diameter, leaf area, leaf fresh weight, stem fresh weight, specific leaf area, leaf area ratio, abaxial epidermis, and mesophyll thickness were higher as shade levels increased. However, there was a decrease in the number of leaves, root to shoot ratio, stomatal density on abaxial and adaxial surfaces, and palisade parenchyma thickness. Nevertheless, root length, leaf and stem dry weights, leaf weight ratio, adaxial stomatal index, adaxial epidermis, and spongy parenchyma thickness remained constant. Plants responded differently to shade, with morphological and anatomical changes, suggesting a phenotypic plasticity and raising the possibility of being grown both in shaded environments and in full sunlight.
