45 research outputs found
Exposure from the Chernobyl accident had adverse effects on erythrocytes, leukocytes, and, platelets in children in the Narodichesky region, Ukraine: A 6-year follow-up study
<p>Abstract</p> <p>Background</p> <p>After the Chernobyl nuclear accident on April 26, 1986, all children in the contaminated territory of the Narodichesky region, Zhitomir Oblast, Ukraine, were obliged to participate in a yearly medical examination. We present the results from these examinations for the years 1993 to 1998. Since the hematopoietic system is an important target, we investigated the association between residential soil density of <sup>137</sup>Caesium (<sup>137</sup>Cs) and hemoglobin concentration, and erythrocyte, platelet, and leukocyte counts in 1,251 children, using 4,989 repeated measurements taken from 1993 to 1998.</p> <p>Methods</p> <p>Soil contamination measurements from 38 settlements were used as exposures. Blood counts were conducted using the same auto-analyzer in all investigations for all years. We used linear mixed models to compensate for the repeated measurements of each child over the six year period. We estimated the adjusted means for all markers, controlling for potential confounders.</p> <p>Results</p> <p>Data show a statistically significant reduction in red and white blood cell counts, platelet counts and hemoglobin with increasing residential <sup>137</sup>Cs soil contamination. Over the six-year observation period, hematologic markers did improve. In children with the higher exposure who were born before the accident, this improvement was more pronounced for platelet counts, and less for red blood cells and hemoglobin. There was no exposure×time interaction for white blood cell counts and not in 702 children who were born after the accident. The initial exposure gradient persisted in this sub-sample of children.</p> <p>Conclusion</p> <p>The study is the first longitudinal analysis from a large cohort of children after the Chernobyl accident. The findings suggest persistent adverse hematological effects associated with residential <sup>137</sup>Cs exposure.</p
Is testosterone responsible for athletic success in female athletes?
BACKGROUND: The aim of this study was to determine the interrelationship between the resting serum testosterone (T) levels of female athletes from different types of sporting events and their athletic success. METHODS: The study involved 599 Russian international-level female athletes (95 highly elite, 190 elite, and 314 sub-elite; age: 16-35 years) and 298 age-matched female controls. The athlete cohort was stratified into four groups according to event duration, distance, and type of activity: 1) endurance athletes; 2) athletes with mixed activity; 3) speed/strength athletes; 4) sprinters. Athletic success was measured by determining the level of achievement of each athlete. RESULTS: The mean T levels of athletes and controls were 1.65±0.87 and 1.76±0.6 nmol/L (P=0.057 for difference between groups) with ranges of 0.08-5.82 and 0.38-2.83 nmol/L in athletes and controls, respectively. T levels were positively associated with athletic success in sprinters (P=0.0002 adjusted for age) only. Moreover, none of the sub-elite sprinters had T>1.9 nmol/L, while 50% of elite and highly elite sprinters had T>1.9 nmol/L (OR=47.0; P<0.0001). CONCLUSIONS: Our data suggest that the measurement of the serum T levels significantly correlates with athletic success in sprinters but not other types of athletes and in the future may be useful in the prediction of sprinting ability
Recombination Phenotypes of Escherichia coli greA Mutants
<p>Abstract</p> <p>Background</p> <p>The elongation factor GreA binds to RNA polymerase and modulates transcriptional pausing. Some recent research suggests that the primary role of GreA may not be to regulate gene expression, but rather, to promote the progression of replication forks which collide with RNA polymerase, and which might otherwise collapse. Replication fork collapse is known to generate dsDNA breaks, which can be recombinogenic. It follows that GreA malfunction could have consequences affecting homologous recombination.</p> <p>Results</p> <p><it>Escherichia coli </it>mutants bearing substitutions of the active site acidic residues of the transcription elongation factor GreA, D41N and E44K, were isolated as suppressors of growth inhibition by a toxic variant of the bacteriophage lambda Red-beta recombination protein. These mutants, as well as a D41A <it>greA </it>mutant and a <it>greA </it>deletion, were tested for proficiency in recombination events. The mutations were found to increase the efficiency of RecA-RecBCD-mediated and RecA-Red-mediated recombination, which are replication-independent, and to decrease the efficiency of replication-dependent Red-mediated recombination.</p> <p>Conclusion</p> <p>These observations provide new evidence for a role of GreA in resolving conflicts between replication and transcription.</p
Erythropoietin Couples Hematopoiesis with Bone Formation
It is well established that bleeding activates the hematopoietic system to regenerate the loss of mature blood elements. We have shown that hematopoietic stem cells (HSCs) isolated from animals challenged with an acute bleed regulate osteoblast differentiation from marrow stromal cells. This suggests that HSCs participate in bone formation where the molecular basis for this activity is the production of BMP2 and BMP6 by HSCs. Yet, what stimulates HSCs to produce BMPs is unclear.In this study, we demonstrate that erythropoietin (Epo) activates Jak-Stat signaling pathways in HSCs which leads to the production of BMPs. Critically, Epo also directly activates mesenchymal cells to form osteoblasts in vitro, which in vivo leads to bone formation. Importantly, Epo first activates osteoclastogenesis which is later followed by osteoblastogenesis that is induced by either Epo directly or the expression of BMPs by HSCs to form bone.These data for the first time demonstrate that Epo regulates the formation of bone by both direct and indirect pathways, and further demonstrates the exquisite coupling between hematopoiesis and osteopoiesis in the marrow
Extracellular proteins of Trametes hirsuta st. 072 induced by copper ions and a lignocellulose substrate
Search for dark photons produced in 13 TeV collisions
Searches are performed for both promptlike and long-lived dark photons,
A
0
, produced in proton-proton
collisions at a center-of-mass energy of 13 TeV, using
A
0
→
μ
þ
μ
−
decays and a data sample corresponding
to an integrated luminosity of
1
.
6
fb
−
1
collected with the LHCb detector. The promptlike
A
0
search covers
the mass range from near the dimuon threshold up to 70 GeV, while the long-lived
A
0
search is restricted to
the low-mass region
214
<m
ð
A
0
Þ
<
350
MeV. No evidence for a signal is found, and 90% confidence
level exclusion limits are placed on the
γ
–
A
0
kinetic-mixing strength. The constraints placed on promptlike
dark photons are the most stringent to date for the mass range
10
.
6
<m
ð
A
0
Þ
<
70
GeV, and are
comparable to the best existing limits for
m
ð
A
0
Þ
<
0
.
5
GeV. The search for long-lived dark photons is the
first to achieve sensitivity using a displaced-vertex signature
TEM and HREM of diamond crystals grown on Si tips: structure and results of ion-beam-treatment.
Diamond single crystals were grown on the silicon whiskers by a hot filament chemical vapor deposition technique at the filament temperature about 2100 degrees C and the temperature of support 800 degrees C. Specimens were examined by SEM, TEM, HRTEM and SAED. When the filament temperature was about 1900 degrees C globular polycrystalline diamond particles were grown. At a support temperature more then 800 degrees C SiC nanoparticles were formed. To investigate the ion etching process of the silicon tip/diamond system, tips were treated with an Ar(+) beam with energy up to 30 kV. The results depend on fluence: at 4 x 10(18)ion/cm(2) diamonds and partially Si tips were destroyed, amorphous layer was formed (sometimes with nanometric size fragments of diamond); at 1 x 10(18)ion/cm(2) sharpened diamonds (radius of curvature about 20 nm) covered with amorphous layer (radius about 80 nm) probably with nanoclusters of diamond were observed; at 4.4 x 10(17) ion/cm(2) there was no visible tip sharpening but formation of amorphous thick layer occurred. The emission characteristics of Si tips covered with diamond were improved due to ion treatment. Since such tips in our case were covered with amorphous layer containing nanometric size fragments of diamond, we suppose this layer is responsible for electron emission improvement
