1,662 research outputs found
Echinoderms have bilateral tendencies
Echinoderms take many forms of symmetry. Pentameral symmetry is the major
form and the other forms are derived from it. However, the ancestors of
echinoderms, which originated from Cambrian period, were believed to be
bilaterians. Echinoderm larvae are bilateral during their early development.
During embryonic development of starfish and sea urchins, the position and the
developmental sequence of each arm are fixed, implying an auxological
anterior/posterior axis. Starfish also possess the Hox gene cluster, which
controls symmetrical development. Overall, echinoderms are thought to have a
bilateral developmental mechanism and process. In this article, we focused on
adult starfish behaviors to corroborate its bilateral tendency. We weighed
their central disk and each arm to measure the position of the center of
gravity. We then studied their turning-over behavior, crawling behavior and
fleeing behavior statistically to obtain the center of frequency of each
behavior. By joining the center of gravity and each center of frequency, we
obtained three behavioral symmetric planes. These behavioral bilateral
tendencies might be related to the A/P axis during the embryonic development of
the starfish. It is very likely that the adult starfish is, to some extent,
bilaterian because it displays some bilateral propensity and has a definite
behavioral symmetric plane. The remainder of bilateral symmetry may have
benefited echinoderms during their evolution from the Cambrian period to the
present
Nebuliser therapy in the intensive care unit
The relationship between identity, lived experience, sexual practices and the language through which these are conveyed has been widely debated in sexuality literature. For example, ‘coming out’ has famously been conceptualised as a ‘speech act’ (Sedgwick 1990) and as a collective narrative (Plummer 1995), while a growing concern for individuals’ diverse identifications in relations to their sexual and gender practices has produced interesting research focusing on linguistic practices among LGBT-identified individuals (Leap 1995; Kulick 2000; Cameron and Kulick 2006; Farqhar 2000). While an explicit focus on language remains marginal to literature on sexualities (Kulick 2000), issue of language use and translation are seldom explicitly addressed in the growing literature on intersectionality. Yet intersectional perspectives ‘reject the separability of analytical and identity categories’ (McCall 2005:1771), and therefore have an implicit stake in the ‘vernacular’ language of the researched, in the ‘scientific’ language of the researcher and in the relationship of continuity between the two. Drawing on literature within gay and lesbian/queer studies and cross-cultural studies, this chapter revisits debates on sexuality, language and intersectionality. I argue for the importance of giving careful consideration to the language we choose to use as researchers to collectively define the people whose experiences we try to capture. I also propose that language itself can be investigated as a productive way to foreground how individual and collective identifications are discursively constructed, and to unpack the diversity of lived experience. I address intersectional complexity as a methodological issue, where methodology is understood not only as the methods and practicalities of doing research, but more broadly as ‘a coherent set of ideas about the philosophy, methods and data that underlie the research process and the production of knowledge’ (McCall 2005:1774). My points are illustrated with examples drawn from my ethnographic study on ‘lesbian’ identity in urban Russia, interspersed with insights from existing literature. In particular, I aim to show that an explicit focus on language can be a productive way to explore the intersections between the global, the national and the local in cross-cultural research on sexuality, while also addressing issues of positionality and accountability to the communities researched
Cost overruns – helping to define what they really mean
Civil engineers are often in the firing line for alleged cost overruns, particularly on major publicly funded infrastructure projects. This usually occurs when the final cost of a project is simply compared with the original estimate, even though this was published a long time ago, in different circumstances and for a quite different project to the one carried out. This paper proposes a systematic approach to ensure that cost overruns, should they occur, are more accurately defined in terms of when the initial and end costs are assessed, from which point of view, at which project stage, and including scope changes and financial assumptions. The paper refers to the UK’s £163 billion nuclear decommissioning programme
Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters
Recent progress in studies of globular clusters has shown that they are not
simple stellar populations, being rather made of multiple generations. Evidence
stems both from photometry and spectroscopy. A new paradigm is then arising for
the formation of massive star clusters, which includes several episodes of star
formation. While this provides an explanation for several features of globular
clusters, including the second parameter problem, it also opens new
perspectives about the relation between globular clusters and the halo of our
Galaxy, and by extension of all populations with a high specific frequency of
globular clusters, such as, e.g., giant elliptical galaxies. We review progress
in this area, focusing on the most recent studies. Several points remain to be
properly understood, in particular those concerning the nature of the polluters
producing the abundance pattern in the clusters and the typical timescale, the
range of cluster masses where this phenomenon is active, and the relation
between globular clusters and other satellites of our Galaxy.Comment: In press (The Astronomy and Astrophysics Review
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Planetary population synthesis
In stellar astrophysics, the technique of population synthesis has been
successfully used for several decades. For planets, it is in contrast still a
young method which only became important in recent years because of the rapid
increase of the number of known extrasolar planets, and the associated growth
of statistical observational constraints. With planetary population synthesis,
the theory of planet formation and evolution can be put to the test against
these constraints. In this review of planetary population synthesis, we first
briefly list key observational constraints. Then, the work flow in the method
and its two main components are presented, namely global end-to-end models that
predict planetary system properties directly from protoplanetary disk
properties and probability distributions for these initial conditions. An
overview of various population synthesis models in the literature is given. The
sub-models for the physical processes considered in global models are
described: the evolution of the protoplanetary disk, the planets' accretion of
solids and gas, orbital migration, and N-body interactions among concurrently
growing protoplanets. Next, typical population synthesis results are
illustrated in the form of new syntheses obtained with the latest generation of
the Bern model. Planetary formation tracks, the distribution of planets in the
mass-distance and radius-distance plane, the planetary mass function, and the
distributions of planetary radii, semimajor axes, and luminosities are shown,
linked to underlying physical processes, and compared with their observational
counterparts. We finish by highlighting the most important predictions made by
population synthesis models and discuss the lessons learned from these
predictions - both those later observationally confirmed and those rejected.Comment: 47 pages, 12 figures. Invited review accepted for publication in the
'Handbook of Exoplanets', planet formation section, section editor: Ralph
Pudritz, Springer reference works, Juan Antonio Belmonte and Hans Deeg, Ed
Protective behaviour of citizens to transport accidents involving hazardous materials: A discrete choice experiment applied to populated areas nearby waterways
Background To improve the information for and preparation of citizens at risk to hazardous material transport accidents, a first important step is to determine how different characteristics of hazardous material transport accidents will influence citizens' protective behaviour. However, quantitative studies investigating citizens' protective behaviour in case of hazardous material transport accidents are scarce. Methods A discrete choice experiment was conducted among subjects (19-64 years) living in the direct vicinity of a large waterway. Scenarios were described by three transport accident characteristics: odour perception, smoke/vapour perception, and the proportion of people in the environment that were leaving at their own discretion. Subjects were asked to consider each scenario as realistic and to choose the alternative that was most appealing to them: staying, seekin
- …
