141 research outputs found
Recommended from our members
Cosmogenic neutron production at the Sudbury Neutrino Observatory
Neutrons produced in nuclear interactions initiated by cosmic-ray muons present an irreducible background to many rare-event searches, even in detectors located deep underground. Models for the production of these neutrons have been tested against previous experimental data, but the extrapolation to deeper sites is not well understood. Here we report results from an analysis of cosmogenically produced neutrons at the Sudbury Neutrino Observatory. A specific set of observables are presented, which can be used to benchmark the validity of geant4 physics models. In addition, the cosmogenic neutron yield, in units of 10-4 cm2/(g·μ), is measured to be 7.28±0.09(stat)-1.12+1.59(syst) in pure heavy water and 7.30±0.07(stat)-1.02+1.40(syst) in NaCl-loaded heavy water. These results provide unique insights into this potential background source for experiments at SNOLAB
Recommended from our members
Measurement of neutron production in atmospheric neutrino interactions at the Sudbury Neutrino Observatory
Neutron production in GeV-scale neutrino interactions is a poorly studied
process. We have measured the neutron multiplicities in atmospheric neutrino
interactions in the Sudbury Neutrino Observatory experiment and compared them
to the prediction of a Monte Carlo simulation using GENIE and a minimally
modified version of GEANT4. We analyzed 837 days of exposure corresponding to
Phase I, using pure heavy water, and Phase II, using a mixture of Cl in heavy
water. Neutrons produced in atmospheric neutrino interactions were identified
with an efficiency of and , for Phase I and II respectively.
The neutron production is measured as a function of the visible energy of the
neutrino interaction and, for charged current quasi-elastic interaction
candidates, also as a function of the neutrino energy. This study is also
performed classifying the complete sample into two pairs of event categories:
charged current quasi-elastic and non charged current quasi-elastic, and
and . Results show good overall agreement between data and
Monte Carlo for both phases, with some small tension with a statistical
significance below for some intermediate energies
Clinical practice: The bleeding child. Part II: Disorders of secondary hemostasis and fibrinolysis
Bleeding complications in children may be caused by disorders of secondary hemostasis or fibrinolysis. Characteristic features in medical history and physical examination, especially of hemophilia, are palpable deep hematomas, bleeding in joints and muscles, and recurrent bleedings. A detailed medical and family history combined with a thorough physical examination is essential to distinguish abnormal from normal bleeding and to decide whether it is necessary to perform diagnostic laboratory evaluation. Initial laboratory tests include prothrombin time and activated partial thromboplastin time. Knowledge of the classical coagulation cascade with its intrinsic, extrinsic, and common pathways, is useful to identify potential defects in the coagulation in order to decide which additional coagulation tests should be performed
Influence of the Chungkookjang on histamine-induced wheal and flare skin response: a randomized, double-blind, placebo controlled trial
Clinical practice guidelines for the prevention and treatment of EGFR inhibitor-associated dermatologic toxicities
Background Epidermal growth factor receptor inhibitors (EGFRI) produce various dermatologic side effects in the majority of patients, and guidelines are crucial for the prevention and treatment of these untoward events. The purpose of this panel was to develop evidence-based recommendations for EGFRI-associated dermatologic toxicities. Methods A multinational, interdisciplinary panel of experts in supportive care in cancer reviewed pertinent studies using established criteria in order to develop first-generation recommendations for EGFRI-associated dermatologic toxicities. Results Prophylactic and reactive recommendations for papulopustular (acneiform) rash, hair changes, radiation dermatitis, pruritus, mucositis, xerosis/fissures, and paronychia are presented, as well as general dermatologic recommendations when possible. Conclusion Prevention and management of EGFRI-related dermatologic toxicities is critical to maintain patients’ health-related quality of life and dose intensity of antineoplastic regimens. More rigorous investigation of these toxicities is warranted to improve preventive and treatment strategies
Measurement of the nu(e) and total B-8 solar neutrino fluxes with the Sudbury Neutrino Observatory phase-III data set
This paper details the solar neutrino analysis of the 385.17-day phase-III data set acquired by the Sudbury Neutrino Observatory (SNO). An array of He-3 proportional counters was installed in the heavy-water target to measure precisely the rate of neutrino-deuteron neutral-current interactions. This technique to determine the total active B-8 solar neutrino flux was largely independent of the methods employed in previous phases. The total flux of active neutrinos was measured to be 5.54(-0.31)(+0.33)(stat.)(-0.34)(+0.36)(syst.) x 10(6) cm(-2) s(-1), consistent with previous measurements and standard solar models. A global analysis of solar and reactor neutrino mixing parameters yielded the best-fit values of Delta m(2) = 7.59(-0.21)(+0.19) x 10(-5) eV(2) and theta = 34.4(-1.2)(+1.3) degrees. DOI: 10.1103/PhysRevC.87.01550
Sociodemographic and clinical characteristics, causal factors and evolution of a group of patients with chronic urticaria-angioedema
Tests of Lorentz invariance at the Sudbury Neutrino Observatory
Experimental tests of Lorentz symmetry in systems of all types are critical
for ensuring that the basic assumptions of physics are well-founded. Data from
all phases of the Sudbury Neutrino Observatory, a kiloton-scale heavy water
Cherenkov detector, are analyzed for possible violations of Lorentz symmetry in
the neutrino sector. Such violations would appear as one of eight possible
signal types in the detector: six seasonal variations in the solar electron
neutrino survival probability differing in energy and time dependence, and two
shape changes to the oscillated solar neutrino energy spectrum. No evidence for
such signals is observed, and limits on the size of such effects are
established in the framework of the Standard Model Extension, including 40
limits on perviously unconstrained operators and improved limits on 15
additional operators. This makes limits on all minimal, Dirac-type Lorentz
violating operators in the neutrino sector available for the first time
COMPARATIVE EFICACY OF LORATADINE AND TERFENADINE IN THE TREATMENT OF CHRONIC IDIOPATHIC URTICARIA
- …
