2,721 research outputs found
Entropy and Long range correlations in literary English
Recently long range correlations were detected in nucleotide sequences and in
human writings by several authors. We undertake here a systematic investigation
of two books, Moby Dick by H. Melville and Grimm's tales, with respect to the
existence of long range correlations. The analysis is based on the calculation
of entropy like quantities as the mutual information for pairs of letters and
the entropy, the mean uncertainty, per letter. We further estimate the number
of different subwords of a given length . Filtering out the contributions
due to the effects of the finite length of the texts, we find correlations
ranging to a few hundred letters. Scaling laws for the mutual information
(decay with a power law), for the entropy per letter (decay with the inverse
square root of ) and for the word numbers (stretched exponential growth with
and with a power law of the text length) were found.Comment: 8 page
Thermodynamics of hot dense H-plasmas: Path integral Monte Carlo simulations and analytical approximations
This work is devoted to the thermodynamics of high-temperature dense hydrogen
plasmas in the pressure region between and Mbar. In particular
we present for this region results of extensive calculations based on a
recently developed path integral Monte Carlo scheme (direct PIMC). This method
allows for a correct treatment of the thermodynamic properties of hot dense
Coulomb systems. Calculations were performed in a broad region of the
nonideality parameter and degeneracy parameter . We give a comparison with a few available results from
other path integral calculations (restricted PIMC) and with analytical
calculations based on Pade approximations for strongly ionized plasmas. Good
agreement between the results obtained from the three independent methods is
found.Comment: RevTex file, 21 pages, 5 ps-figures include
Guessing probability distributions from small samples
We propose a new method for the calculation of the statistical properties, as
e.g. the entropy, of unknown generators of symbolic sequences. The probability
distribution of the elements of a population can be approximated by
the frequencies of a sample provided the sample is long enough so that
each element occurs many times. Our method yields an approximation if this
precondition does not hold. For a given we recalculate the Zipf--ordered
probability distribution by optimization of the parameters of a guessed
distribution. We demonstrate that our method yields reliable results.Comment: 10 pages, uuencoded compressed PostScrip
Star formation in shocked cluster spirals and their tails
Recent observations of ram pressure stripped spiral galaxies in clusters
revealed details of the stripping process, i.e., the truncation of all
interstellar medium (ISM) phases and of star formation (SF) in the disk, and
multiphase star-forming tails. Some stripped galaxies, in particular in merging
clusters, develop spectacular star-forming tails, giving them a jellyfish-like
appearance. In merging clusters, merger shocks in the intra-cluster medium
(ICM) are thought to have overrun these galaxies, enhancing the ambient ICM
pressure and thus triggering SF, gas stripping and tail formation. We present
idealised hydrodynamical simulations of this scenario, including standard
descriptions for SF and stellar feedback. To aid the interpretation of recent
and upcoming observations, we focus on particular structures and dynamics in SF
patterns in the remaining gas disk and in the near tails, which are easiest to
observe. The observed jellyfish morphology is qualitatively reproduced for,
both, face-on and edge-on stripping. In edge-on stripping, the interplay
between the ICM wind and the disk rotation leads to asymmetries along the ICM
wind direction and perpendicular to it. The apparent tail is still part of a
highly deformed gaseous and young stellar disk. In both geometries, SF takes
place in knots throughout the tail, such that the stars in the tails show no
ordered age gradients. Significant SF enhancement in the disk occurs only at
radii where the gas will be stripped in due course.Comment: 6 pages, submitted to MNRAS Letter
Mass and Gas Profiles in A1689: Joint X-ray and Lensing Analysis
We carry out a comprehensive joint analysis of high quality HST/ACS and
Chandra measurements of A1689, from which we derive mass, temperature, X-ray
emission and abundance profiles. The X-ray emission is smooth and symmetric,
and the lensing mass is centrally concentrated indicating a relaxed cluster.
Assuming hydrostatic equilibrium we deduce a 3D mass profile that agrees
simultaneously with both the lensing and X-ray measurements. However, the
projected temperature profile predicted with this 3D mass profile exceeds the
observed temperature by ~30% at all radii, a level of discrepancy comparable to
the level found for other relaxed clusters. This result may support recent
suggestions from hydrodynamical simulations that denser, more X-ray luminous
small-scale structure can bias observed temperature measurements downward at
about the same (~30%) level. We determine the gas entropy at 0.1r_{vir} (where
r_{vir} is the virial radius) to be ~800 keV cm^2, as expected for a high
temperature cluster, but its profile at >0.1r_{vir} has a power-law form with
index ~0.8, considerably shallower than the ~1.1 index advocated by theoretical
studies and simulations. Moreover, if a constant entropy ''floor'' exists at
all, then it is within a small region in the inner core, r<0.02r_{vir}, in
accord with previous theoretical studies of massive clusters.Comment: 18 pages, 20 figures, 7 tables, accepted for publication in MNRAS,
minor changes to match published versio
Discovery of a very X-ray luminous galaxy cluster at z=0.89 in the WARPS survey
We report the discovery of the galaxy cluster ClJ1226.9+3332 in the Wide
Angle ROSAT Pointed Survey (WARPS). At z=0.888 and L_X=1.1e45 erg/s (0.5-2.0
keV, h_0=0.5) ClJ1226.9+3332 is the most distant X-ray luminous cluster
currently known. The mere existence of this system represents a huge problem
for Omega_0=1 world models.
At the modest (off-axis) resolution of the ROSAT PSPC observation in which
the system was detected, ClJ1226.9+3332 appears relaxed; an off-axis HRI
observation confirms this impression and rules out significant contamination
from point sources. However, in moderately deep optical images (R and I band)
the cluster exhibits signs of substructure in its apparent galaxy distribution.
A first crude estimate of the velocity dispersion of the cluster galaxies based
on six redshifts yields a high value of 1650 km/s, indicative of a very massive
cluster and/or the presence of substructure along the line of sight. While a
more accurate assessment of the dynamical state of this system requires much
better data at both optical and X-ray wavelengths, the high mass of the cluster
has already been unambiguously confirmed by a very strong detection of the
Sunyaev-Zel'dovich effect in its direction (Joy et al. 2001).
Using ClJ1226.9+3332 and ClJ0152.7-1357 (z=0.835), the second-most distant
X-ray luminous cluster currently known and also a WARPS discovery, we obtain a
first estimate of the cluster X-ray luminosity function at 0.8<z<1.4 and
L_X>5e44 erg/s. Using the best currently available data, we find the comoving
space density of very distant, massive clusters to be in excellent agreement
with the value measured locally (z<0.3), and conclude that negative evolution
is not required at these luminosities out to z~1. (truncated)Comment: accepted for publication in ApJ Letters, 6 pages, 2 figures, uses
emulateapj.st
Statistical Mechanics of Canonical-Dissipative Systems and Applications to Swarm Dynamics
We develop the theory of canonical-dissipative systems, based on the
assumption that both the conservative and the dissipative elements of the
dynamics are determined by invariants of motion. In this case, known solutions
for conservative systems can be used for an extension of the dynamics, which
also includes elements such as the take-up/dissipation of energy. This way, a
rather complex dynamics can be mapped to an analytically tractable model, while
still covering important features of non-equilibrium systems. In our paper,
this approach is used to derive a rather general swarm model that considers (a)
the energetic conditions of swarming, i.e. for active motion, (b) interactions
between the particles based on global couplings. We derive analytical
expressions for the non-equilibrium velocity distribution and the mean squared
displacement of the swarm. Further, we investigate the influence of different
global couplings on the overall behavior of the swarm by means of
particle-based computer simulations and compare them with the analytical
estimations.Comment: 14 pages incl. 13 figures. v2: misprints in Eq. (40) corrected, ref.
updated. For related work see also:
http://summa.physik.hu-berlin.de/~frank/active.htm
Using Chandra to Unveil the High-Energy Properties of the High-Magnetic Field Radio Pulsar J1119-6127
(shortened) PSR J1119-6127 is a high magnetic field (B=4.1E13 Gauss), young
(<=1,700 year-old), and slow (P=408 ms) radio pulsar associated with the
supernova remnant (SNR) G292.2-0.5. In 2003, Chandra allowed the detection of
the X-ray counterpart of the radio pulsar, and provided the first evidence for
a compact pulsar wind nebula (PWN). We here present new Chandra observations
which allowed for the first time an imaging and spectroscopic study of the
pulsar and PWN independently of each other. The PWN is only evident in the hard
band and consists of jet-like structures extending to at least 7" from the
pulsar, with the southern `jet' being longer than the northern `jet'. The
spectrum of the PWN is described by a power law with a photon index~1.1 for the
compact PWN and ~1.4 for the southern long jet (at a fixed column density of
1.8E22/cm2), and a total luminosity of 4E32 ergs/s (0.5-7 keV), at a distance
of 8.4 kpc. The pulsar's spectrum is clearly softer than the PWN's spectrum. We
rule out a single blackbody model for the pulsar, and present the first
evidence of non-thermal (presumably magnetospheric) emission that dominates
above ~3keV. A two-component model consisting of a power law component (with
photon index ~1.5--2.0) plus a thermal component provides the best fit. The
thermal component can be fit by either a blackbody model with a temperature
kT~0.21 keV, or a neutron star atmospheric model with a temperature kT~0.14
keV. The efficiency of the pulsar in converting its rotational power, Edot,
into non-thermal X-ray emission from the pulsar and PWN is ~5E-4, comparable to
other rotation-powered pulsars with a similar Edot. We discuss our results in
the context of the X-ray manifestation of high-magnetic field radio pulsars in
comparison with rotation-powered pulsars and magnetars.Comment: 26 pages including 3 tables and 7 figures. Accepted for publication
in Ap
- …
