13 research outputs found

    Insights into the Affordable Medicines Facility-malaria in Ghana: the role of caregivers and licensed chemical sellers in four regions

    Get PDF
    BACKGROUND: The Affordable Medicine Facility-malaria (AMFm) was an innovative global financing mechanism for the provision of quality-assured artemisinin-based combination therapy (ACT) across both the private and public health sectors in eight countries in sub-Saharan Africa. This study evaluated the effectiveness of AMFm subsidies in increasing access to ACT in Ghana and documented malaria management practices at the household and community levels during the implementation of the AMFm. METHODS: This study, conducted in four regions in Ghana between January, 2011 to December, 2012, employed cross-sectional mixed-methods design that included qualitative and quantitative elements, specifically household surveys, focus group discussions (FGD) and in-depth interviews. RESULTS: The study indicated high ACT availability, adequate provider knowledge and reasonably low quality-assured ACT use in the study areas, all of which are a reflection of a high market share of ACT in these hard-to-reach areas of the country. Adequate recognition of childhood malaria symptoms by licensed chemical seller (LCS) attendants was observed. A preference by caregivers for LCS over health facilities for seeking treatment solutions to childhood malaria was found. CONCLUSIONS: Artemisinin-based combination therapy with the AMFm logo was accessible and affordable for most people seeking treatment from health facilities and LCS shops in rural areas. Caregivers and LCS were seen to play key roles in the health of the community especially with children under 5 years of age

    Characterization of malaria transmission by vector populations for improved interventions during the dry season in the Kpone-on-Sea area of coastal Ghana

    No full text
    Abstract Background Malaria is a major public health problem in Ghana. We present a site-specific entomological study of malaria vectors and transmission indices as part of an effort to develop a site for the testing of improved control strategies including possible vaccine trials. Methods Pyrethrum spray catches (PSC), and indoor and outdoor human landing collections of adult female anopheline mosquitoes were carried out over a six-month period (November 2005 - April 2006) at Kpone-on-Sea, a fishing village in southern Ghana. These were morphologically identified to species level and sibling species of the Anopheles gambiae complex further characterized by the polymerase chain reaction (PCR). Enzyme-linked immunosorbent assay was used to detect Plasmodium falciparum mosquito infectivity and host blood meal sources. Parity rate was examined based on dilatation of ovarian tracheoles following dissection. Results Of the 1233 Anopheles mosquitoes collected, An. gambiae s.l. was predominant (99.5%), followed by An. funestus (0.4%) and An. pharoensis (0.1%). All An. gambiae s.l. examined (480) were identified as An. gambiae s.s. with a majority of M molecular form (98.2%) and only 1.8% S form with no record of M/S hybrid. A significantly higher proportion of anophelines were observed outdoors relative to indoors (χ2 = 159.34, df = 1, p An. gambiae M molecular form contributed to transmission with a high degree of anthropophily, parity rate and an estimated entomological inoculation rate (EIR) of 62.1 infective bites/person/year. The Majority of the infective bites occurred outdoors after 09.00 pm reaching peaks between 12.00-01.00 am and 03.00-04.00 am. Conclusion Anopheles gambiae M molecular form is responsible for maintaining the status quo of malaria in the surveyed site during the study period. The findings provide a baseline for evidence-based planning and implementation of improved malaria interventions. The plasticity observed in biting patterns especially the combined outdoor and early biting behavior of the vector may undermine the success of insecticide-based strategies using insecticide treated nets (ITN) and indoor residual spray (IRS). As such, novel or improved vector interventions should be informed by the local malaria epidemiology data as it relates to vector behavior.</p

    Diagnostic capacity, and predictive values of rapid diagnostic tests for accurate diagnosis of Plasmodium falciparum in febrile children in Asante-Akim, Ghana

    No full text
    Abstract Background This study seeks to compare the performance of HRP2 (First Response) and pLDH/HRP2 (Combo) RDTs for falciparum malaria against microscopy and PCR in acutely ill febrile children at presentation and follow-up. Methods This is an interventional study that recruited children < 5 years who reported to health facilities with a history of fever within the past 72 h or a documented axillary temperature of 37.5 °C. Using a longitudinal approach, recruitment and follow-up of participants was done between January and May 2012. Based on results of HRP2-RDT screening, the children were grouped into one of the following three categories: (1) tested positive for malaria using RDT and received anti-malarial treatment (group 1, n = 85); (2) tested negative for malaria using RDT and were given anti-malarial treatment by the admitting physician (group 2, n = 74); or, (3) tested negative for malaria using RDT and did not receive any anti-malarial treatment (group 3, n = 101). Independent microscopy, PCR and Combo-RDT tests were done for each sample on day 0 and all follow-up days. Results Mean age of the study participants was 22 months and females accounted for nearly 50%. At the time of diagnosis, the mean body temperature was 37.9 °C (range 35–40.1 °C). Microscopic parasite density ranged between 300 and 99,500 parasites/µL. With microscopy as gold standard, the sensitivity of HRP2 and Combo-RDTs were 95.1 and 96.3%, respectively. The sensitivities, specificities and predictive values for RDTs were relatively higher in microscopy-defined malaria cases than in PCR positive-defined cases. On day 0, participants who initially tested negative for HRP2 were positive by microscopy (n = 2), Combo (n = 1) and PCR (n = 17). On days 1 and 2, five of the children in this group (initially HRP2-negative) tested positive by PCR alone. On day 28, four patients who were originally HRP2-negative tested positive for microscopy (n = 2), Combo (n = 2) and PCR (n = 4). Conclusion The HRP2/pLDH RDTs showed comparable diagnostic accuracy in children presenting with an acute febrile illness to health facilities in a hard-to-reach rural area in Ghana. Nevertheless, discordant results recorded on day 0 and follow-up visits using the recommended RDTs means improved malaria diagnostic capability in malaria-endemic regions is necessary
    corecore