15,995 research outputs found
Relativistic description of the charmonium mass spectrum
The charmonium mass spectrum is considered in the framework of the
constituent quark model with the relativistic treatment of the c quark. The
obtained masses are in good agreement with the existing experimental data
including the mass of eta_c(2S).Comment: 5 page
Spin projection and spin current density within relativistic electronic transport calculations
A spin projection scheme is presented which allows the decomposition of the
electric conductivity into two different spin channels within fully
relativistic transport calculations that account for the impact
of spin-orbit coupling. This is demonstrated by calculations of the
spin-resolved conductivity of FeCr and CoPt disordered
alloys on the basis of the corresponding Kubo-Greenwood equation implemented
using the Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA)
band structure method. In addition, results for the residual resistivity of
diluted Ni-based alloys are presented that are compared to theoretical and
experimental ones that rely on Mott's two-current model for spin-polarized
systems. The application of the scheme to deal with the spin-orbit induced spin
Hall effect is discussed in addition
Stability of negative ionization fronts: regularization by electric screening?
We recently have proposed that a reduced interfacial model for streamer
propagation is able to explain spontaneous branching. Such models require
regularization. In the present paper we investigate how transversal Fourier
modes of a planar ionization front are regularized by the electric screening
length. For a fixed value of the electric field ahead of the front we calculate
the dispersion relation numerically. These results guide the derivation of
analytical asymptotes for arbitrary fields: for small wave-vector k, the growth
rate s(k) grows linearly with k, for large k, it saturates at some positive
plateau value. We give a physical interpretation of these results.Comment: 11 pages, 2 figure
Ab-initio calculation of the Gilbert damping parameter via linear response formalism
A Kubo-Greenwood-like equation for the Gilbert damping parameter is
presented that is based on the linear response formalism. Its implementation
using the fully relativistic Korringa-Kohn-Rostoker (KKR) band structure method
in combination with Coherent Potential Approximation (CPA) alloy theory allows
it to be applied to a wide range of situations. This is demonstrated with
results obtained for the bcc alloy system FeCo as well as for a
series of alloys of permalloy with 5d transition metals.
To account for the thermal displacements of atoms as a scattering mechanism,
an alloy-analogy model is introduced. The corresponding calculations for Ni
correctly describe the rapid change of when small amounts of
substitutional Cu are introduced
- …
