55 research outputs found
Abnormal photoreceptor outer segment development and early retinal degeneration in kif3a mutant zebrafish
Photoreceptors are highly specialized sensory neurons that possess a modified primary cilium called the outer segment. Photoreceptor outer segment formation and maintenance require highly active protein transport via a process known as intraflagellar transport. Anterograde transport in outer segments is powered by the heterotrimeric kinesin II and coordinated by intraflagellar transport proteins. Here, we describe a new zebrafish model carrying a nonsense mutation in the kinesin II family member 3A (kif3a) gene. Kif3a mutant zebrafish exhibited curved body axes and kidney cysts. Outer segments were not formed in most parts of the mutant retina, and rhodopsin was mislocalized, suggesting KIF3A has a role in rhodopsin trafficking. Both rod and cone photoreceptors degenerated rapidly between 4 and 9 days post fertilization, and electroretinography response was not detected in 7 days post fertilization mutant larvae. Loss of KIF3A in zebrafish also resulted in an intracellular transport defect affecting anterograde but not retrograde transport of organelles. Our results indicate KIF3A plays a conserved role in photoreceptor outer segment formation and intracellular transport
REEP6 Deficiency Leads to Retinal Degeneration through Disruption of ER Homeostasis and Protein Trafficking
Retinitis pigmentosa (RP) is the most common form of inherited retinal dystrophy. We recently identified mutations in REEP6, which encodes the receptor expression enhancing protein 6, in several families with autosomal recessive RP. REEP6 is related to the REEP and Yop1p family of ER shaping proteins and potential receptor accessory proteins, but the role of REEP6 in the retina is unknown. Here we characterise the disease mechanisms associated with loss of REEP6 function using a Reep6 knockout mouse generated by CRISPR/Cas9 gene editing. In control mice REEP6 was localised to the inner segment and outer plexiform layer of rod photoreceptors. The Reep6-/- mice exhibited progressive photoreceptor degeneration from P20 onwards. Ultrastructural analyses at P20 by transmission electron microscopy and 3View serial block face scanning EM revealed an expansion of the distal ER in the Reep6-/- rods and an increase in their number of mitochondria. Electroretinograms revealed photoreceptor dysfunction preceded degeneration, suggesting potential defects in phototransduction. There was no effect on the traffic of rhodopsin, Rom1 or peripherin/rds; however, the retinal guanylate cyclases GC1 and GC2 were severely affected in the Reep6 knockout animals, with almost undetectable expression. These changes correlated with an increase in C/EBP homologous protein (CHOP) expression and the activation of caspase 12, suggesting that ER stress contributes to cell death. Collectively, these data suggest that REEP6 plays an essential role in maintaining cGMP homeostasis though facilitating the stability and/or trafficking of guanylate cyclases and maintaining ER and mitochondrial homeostasis
Rpgrip1 is required for rod outer segment development and ciliary protein trafficking in zebrafish
The authors would like to thank the Royal Society of London, the National Eye Research Centre, the Visual Research Trust, Fight for Sight, the W.H. Ross Foundation, the Rosetrees Trust, and the Glasgow Children’s Hospital Charity for supporting this work. This work was also supported by the Deanship of Scientific Research at King Saud University for funding this research (Research Project) grant number ‘RGP – VPP – 219’.Mutations in the RPGR-interacting protein 1 (RPGRIP1) gene cause recessive Leber congenital amaurosis (LCA), juvenile retinitis pigmentosa (RP) and cone-rod dystrophy. RPGRIP1 interacts with other retinal disease-causing proteins and has been proposed to have a role in ciliary protein transport; however, its function remains elusive. Here, we describe a new zebrafish model carrying a nonsense mutation in the rpgrip1 gene. Rpgrip1homozygous mutants do not form rod outer segments and display mislocalization of rhodopsin, suggesting a role for RPGRIP1 in rhodopsin-bearing vesicle trafficking. Furthermore, Rab8, the key regulator of rhodopsin ciliary trafficking, was mislocalized in photoreceptor cells of rpgrip1 mutants. The degeneration of rod cells is early onset, followed by the death of cone cells. These phenotypes are similar to that observed in LCA and juvenile RP patients. Our data indicate RPGRIP1 is necessary for rod outer segment development through regulating ciliary protein trafficking. The rpgrip1 mutant zebrafish may provide a platform for developing therapeutic treatments for RP patients.Publisher PDFPeer reviewe
TGR5 activation induces cytoprotective changes in the heart and improves myocardial adaptability to physiologic, inotropic, and pressure‐induced stress in mice
Spata7 is a retinal ciliopathy gene critical for correct RPGRIP1 localization and protein trafficking in the retina.
Isochlorogenic acid A promotes melanin synthesis in B16 cell through the β-catenin signal pathway
Recommended from our members
TGR5 activation induces cytoprotective changes in the heart and improves myocardial adaptability to physiologic, inotropic, and pressure‐induced stress in mice
IntroductionAdministration of cholic acid, or its synthetic derivative, 6-alpha-ethyl-23(S)-methylcholic acid (INT-777), activates the membrane GPCR, TGR5, influences whole body metabolism, reduces atherosclerosis, and benefits the cardiovascular physiology in mice. Direct effects of TGR5 agonists, and the role for TGR5, on myocardial cell biology and stress response are unknown.MethodsMice were fed chow supplemented with 0.5% cholic acid (CA) or 0.025% INT-777, a specific TGR5 agonist, or regular chow for 3 weeks. Anthropometric, biochemical, physiologic (electrocardiography and echocardiography), and molecular analysis was performed at baseline. CA and INT-777 fed mice were challenged with acute exercise-induced stress, acute catecholamine-induced stress, and hemodynamic stress induced by transverse aortic constriction (TAC) for a period of 8 weeks. In separate experiments, mice born with constitutive deletion of TGR5 in cardiomyocytes (CM-TGR5del ) were exposed to exercise, inotropic, and TAC-induced stress.ResultsAdministration of CA and INT-777 supplemented diets upregulated TGR5 expression and activated Akt, PKA, and ERK1/2 in the heart. CA and INT-777 fed mice showed improved exercise tolerance, improved sensitivity to catecholamine and attenuation in pathologic remodeling of the heart under hemodynamic stress. In contrast, CM-TGR5del showed poor response to exercise and catecholamine challenge as well as higher mortality and signs of accelerated cardiomyopathy under hemodynamic stress.ConclusionsBile acids, specifically TGR5 agonists, induce cytoprotective changes in the heart and improve myocardial response to physiologic, inotropic, and hemodynamic stress in mice. TGR5 plays a critical role in myocardial adaptability, and TGR5 activation may represent a potentially attractive treatment option in heart failure
Recommended from our members
Cardiomyopathy reverses with recovery of liver injury, cholestasis and cholanemia in mouse model of biliary fibrosis
BackgroundTriggers and exacerbants of cirrhotic cardiomyopathy (CC) are poorly understood, limiting treatment options in patients with chronic liver diseases. Liver transplantation alone reverses some features of CC, but the physiology behind this effect has never been studied.AimsWe aimed to determine whether reversal of liver injury and fibrosis in mouse affects cardiac parameters. The second aim was to determine whether cardiomyopathy can be induced by specifically increasing systemic bile acid (BA) levels.Methods6-8 week old male C57BL6J mice were fed either chow (n = 5) or 3,5-diethoxycarbonyl-1,4-dihydroxychollidine (DDC) (n = 10) for 3 weeks. At the end of 3 weeks, half the mice in the DDC fed group were randomized to chow (the reversed [REV] group). Serial ECHOs and electrocardiographic analysis was conducted weekly for 6 weeks followed by liver tissue and serum studies. Hearts were analysed for key components of function and cell signalling. Cardiac physiological and molecular parameters were similarly analysed in Abcb11(-/-) mice (n = 5/grp) fed 0.5% cholic acid supplemented diet for 1 week.ResultsMice in the REV group showed normalization of biochemical markers of liver injury with resolution of electrocardiographic and ECHO aberrations. Catecholamine resistance seen in DDC group resolved in the REV group. Cardiac recovery was accompanied by normalization of cardiac troponin-T2 as well as resolution of cardiac stress response at RNA level. Cardiovascular physiological and molecular parameters correlated with degree of cholanemia. Cardiomyopathy was reproduced in cholanemic BA fed Abcb11(-/-) mice.ConclusionsCardiomyopathy resolves with resolution of liver injury, is associated with cholanaemia, and can be induced by BA feeding
Corrigendum to “Conditional loss of Spata7 in photoreceptors causes progressive retinal degeneration in mice” [Exp. Eye Res. 166 (2018) 120–130]
- …
