1,471 research outputs found

    Radio emission from satellite-Jupiter interactions (especially Ganymede)

    Full text link
    Analyzing a database of 26 years of observations of Jupiter from the Nan\c{c}ay Decameter Array, we study the occurrence of Io-independent emissions as a function of the orbital phase of the other Galilean satellites and Amalthea. We identify unambiguously the emissions induced by Ganymede and characterize their intervals of occurrence in CML and Ganymede phase and longitude. We also find hints of emissions induced by Europa and, surprisingly, by Amalthea. The signature of Callisto-induced emissions is more tenuous.Comment: 14 pages, 7 figures, in "Planetary Radio Emissions VIII", G. Fischer, G. Mann, M. Panchenko and P. Zarka eds., Austrian Acad. Sci. Press, Vienna, in press, 201

    Tree-ring width wavelet and spectral analysis of solar variability and climatic effects on a Chilean cypress during the last two and a half millennia

    No full text
    International audienceSpectral and wavelet analysis were performed on a tree ring width time series obtained from a 2500 yr old cypress tree (Fitzroya cupressoides) from Costa del Osorno, Chile. The periods for analysis were selected at 95% confidence level. Both periodicities characteristic of solar activity and climatic variations were found in this tree ring width series. The 11 and 22 years solar cycle periods were present in tree ring data with a confidence level above 98%. This indicates the solar modulation of climatic variations is being recorded by the tree ring grown. However wavelet analysis shows that these are present only sparsely. Short-term variations, between 2-5 years, are also present in tree ring data, and are shown by wavelet maps to be a more permanent characteristic. This time scale is a signature of ENSO events. Long-term variations, above 200 years, are also present in tree ring data. The spectral analysis performed in this work shows that this species has the ability to record solar-ENSO variations that seems to be affecting the local environment of tree growth, and also that this region was influenced by ENSO events at least in the past 2500 yr interval covered by this study

    Geoeffectiveness and efficiency of CIR, Sheath and ICME in generation of magnetic storms

    Full text link
    We investigate relative role of various types of solar wind streams in generation of magnetic storms. On the basis of the OMNI data of interplanetary measurements for the period of 1976-2000 we analyze 798 geomagnetic storms with Dst < -50 nT and their interplanetary sources: corotating interaction regions (CIR), interplanetary CME (ICME) including magnetic clouds (MC) and Ejecta and compression regions Sheath before both types of ICME. For various types of solar wind we study following relative characteristics: occurrence rate; mass, momentum, energy and magnetic fluxes; probability of generation of magnetic storm (geoeffectiveness) and efficiency of process of this generation. Obtained results show that despite magnetic clouds have lower occurrence rate and lower efficiency than CIR and Sheath they play an essential role in generation of magnetic storms due to higher geoeffectiveness of storm generation (i.e higher probability to contain large and long-term southward IMF Bz component).Comment: 23 pages, 4 figures, 3 tables, submitted to JGR special issue "Response of Geospace to High-Speed Streams

    Relationship between group sunspot number and Wolf sunspot number

    Full text link
    Continuous wavelet transform and cross-wavelet transform have been used to investigate the phase periodicity and synchrony of the monthly mean Wolf (RzR_{z}) and group (RgR_{g}) sunspot numbers during the period of June 1795 to December 1995. The Schwabe cycle is the only one common period in Rg and Rz, but it is not well-defined in case of cycles 5-7 of Rg and in case of cycles 5 and 6 of RzR_{z}. In fact, the Schwabe period is slightly different in RgR_{g} and RzR_{z} before cycle 12, but from cycle 12 onwards it is almost the same for the two time series. Asynchrony of the two time series is more obviously seen in cycles 5 and 6 than in the following cycles, and usually more obviously seen around the maximum time of a cycle than during the rest of the cycle. RgR_{g} is found to fit RzR_{z} better in both amplitudes and peak epoch during the minimum time time of a solar cycle than during the maximum time of the cycle, which should be caused by their different definition, and around the maximum time of a cycle, RgR_{g} is usually less than RzR_{z}. Asynchrony of RgR_{g} and RzR_{z} should somewhat agree with different sunspot cycle characteristics exhibited by themselves

    A studying of solar-ENSO correlation with southern Brazil tree-ring index (1955?1994)

    No full text
    International audienceSolar activity, volcanic aerosol, El Niño-Southern Oscillation and global temperature anomalies effects on Southern Brazil tree growth rings are presented through multiple linear analysis. Linear correlations were made on annual, 10 year running averages and band pass filter. For annual averages, the correlation coefficients were low, and the 10 years running average correlations the coefficient correlations were much higher. The multiple regression of 2 to 5 year band pass filter indicates that 60% of the variance in tree ring index was explained by volcanic eruptions, Southern Oscillation Index and temperature anomalies. The multiple regression of 10 year running averages indicates that 84% of the variance in tree ring index was explained by solar activity and another time series. These results indicate that the effects of solar activity, volcanic eruptions, ENSO and temperature anomalies on tree rings are better seen on long timescales than volcanic eruption, ENSO and temperature anomaly

    Analysis of cosmic ray variations observed by the CARPET in association with solar flares in 2011-2012

    Get PDF
    The CARPET cosmic ray detector was installed on April 2006 at CASLEO (Complejo Astronmico El Leoncito) at the Argentinean Andes (31.8S, 69.3W, 2550 m, Rc=9.65 GV). This instrument was developed within an international cooperation between the Lebedev Physical Institute RAS (LPI; Russia), the Centro de Radio Astronomia e Astrofsica Mackenzie (CRAAM; Brazil) and the Complejo Astronmico el Leoncito (CASLEO; Argentina). In this paper we present results of analysis of cosmic ray variations recorded by the CARPET during increased solar flare activity in 2011-2012. Available solar and interplanetary medium observational data obtained onboard GOES, FERMI, ISS, as well as cosmic ray measurements by ground-based neutron monitor network were also used in the present analysis.Fil: Makhmutov, V.. Lebedev Physical Institute; Rusia. Universidade Presbiteriana Mackenzie; BrasilFil: Raulin, J. P.. Universidade Presbiteriana Mackenzie; BrasilFil: De Mendonca, R. R. S.. National Institute for Space Research; BrasilFil: Bazilevskaya, G. A.. Lebedev Physical Institute; RusiaFil: Correia, E.. Universidade Presbiteriana Mackenzie; Brasil. National Institute for Space Research; BrasilFil: Kaufmann, Pierre. Universidade Presbiteriana Mackenzie; BrasilFil: Marun, Adolfo Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Complejo Astronómico "El Leoncito". Universidad Nacional de Córdoba. Complejo Astronómico "El Leoncito". Universidad Nacional de la Plata. Complejo Astronómico "El Leoncito". Universidad Nacional de San Juan. Complejo Astronómico "El Leoncito"; ArgentinaFil: Fernandez, German Enzo Leonel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Complejo Astronómico "El Leoncito". Universidad Nacional de Córdoba. Complejo Astronómico "El Leoncito". Universidad Nacional de la Plata. Complejo Astronómico "El Leoncito". Universidad Nacional de San Juan. Complejo Astronómico "El Leoncito"; ArgentinaFil: Echer, E.. National Institute for Space Research; Brasi

    Are solar cycles predictable?

    Full text link
    Various methods (or recipes) have been proposed to predict future solar activity levels - with mixed success. Among these, some precursor methods based upon quantities determined around or a few years before solar minimum have provided rather high correlations with the strength of the following cycles. Recently, data assimilation with an advection-dominated (flux-transport) dynamo model has been proposed as a predictive tool, yielding remarkably high correlation coefficients. After discussing the potential implications of these results and the criticism that has been raised, we study the possible physical origin(s) of the predictive skill provided by precursor and other methods. It is found that the combination of the overlap of solar cycles and their amplitude-dependent rise time (Waldmeier's rule) introduces correlations in the sunspot number (or area) record, which account for the predictive skill of many precursor methods. This explanation requires no direct physical relation between the precursor quantity and the dynamo mechanism (in the sense of the Babcock-Leighton scheme or otherwise).Comment: 5 pages, 2 figure

    Multiwavelength Study on Solar and Interplanetary Origins of the Strongest Geomagnetic Storm of Solar Cycle 23

    Full text link
    We study the solar sources of an intense geomagnetic storm of solar cycle 23 that occurred on 20 November 2003, based on ground- and space-based multiwavelength observations. The coronal mass ejections (CMEs) responsible for the above geomagnetic storm originated from the super-active region NOAA 10501. We investigate the H-alpha observations of the flare events made with a 15 cm solar tower telescope at ARIES, Nainital, India. The propagation characteristics of the CMEs have been derived from the three-dimensional images of the solar wind (i.e., density and speed) obtained from the interplanetary scintillation data, supplemented with other ground- and space-based measurements. The TRACE, SXI and H-alpha observations revealed two successive ejections (of speeds ~350 and ~100 km/s), originating from the same filament channel, which were associated with two high speed CMEs (~1223 and ~1660 km/s, respectively). These two ejections generated propagating fast shock waves (i.e., fast drifting type II radio bursts) in the corona. The interaction of these CMEs along the Sun-Earth line has led to the severity of the storm. According to our investigation, the interplanetary medium consisted of two merging magnetic clouds (MCs) that preserved their identity during their propagation. These magnetic clouds made the interplanetary magnetic field (IMF) southward for a long time, which reconnected with the geomagnetic field, resulting the super-storm (Dst_peak=-472 nT) on the Earth.Comment: 24 pages, 16 figures, Accepted for publication in Solar Physic
    corecore