1,471 research outputs found
Radio emission from satellite-Jupiter interactions (especially Ganymede)
Analyzing a database of 26 years of observations of Jupiter from the
Nan\c{c}ay Decameter Array, we study the occurrence of Io-independent emissions
as a function of the orbital phase of the other Galilean satellites and
Amalthea. We identify unambiguously the emissions induced by Ganymede and
characterize their intervals of occurrence in CML and Ganymede phase and
longitude. We also find hints of emissions induced by Europa and, surprisingly,
by Amalthea. The signature of Callisto-induced emissions is more tenuous.Comment: 14 pages, 7 figures, in "Planetary Radio Emissions VIII", G. Fischer,
G. Mann, M. Panchenko and P. Zarka eds., Austrian Acad. Sci. Press, Vienna,
in press, 201
Tree-ring width wavelet and spectral analysis of solar variability and climatic effects on a Chilean cypress during the last two and a half millennia
International audienceSpectral and wavelet analysis were performed on a tree ring width time series obtained from a 2500 yr old cypress tree (Fitzroya cupressoides) from Costa del Osorno, Chile. The periods for analysis were selected at 95% confidence level. Both periodicities characteristic of solar activity and climatic variations were found in this tree ring width series. The 11 and 22 years solar cycle periods were present in tree ring data with a confidence level above 98%. This indicates the solar modulation of climatic variations is being recorded by the tree ring grown. However wavelet analysis shows that these are present only sparsely. Short-term variations, between 2-5 years, are also present in tree ring data, and are shown by wavelet maps to be a more permanent characteristic. This time scale is a signature of ENSO events. Long-term variations, above 200 years, are also present in tree ring data. The spectral analysis performed in this work shows that this species has the ability to record solar-ENSO variations that seems to be affecting the local environment of tree growth, and also that this region was influenced by ENSO events at least in the past 2500 yr interval covered by this study
Geoeffectiveness and efficiency of CIR, Sheath and ICME in generation of magnetic storms
We investigate relative role of various types of solar wind streams in
generation of magnetic storms. On the basis of the OMNI data of interplanetary
measurements for the period of 1976-2000 we analyze 798 geomagnetic storms with
Dst < -50 nT and their interplanetary sources: corotating interaction regions
(CIR), interplanetary CME (ICME) including magnetic clouds (MC) and Ejecta and
compression regions Sheath before both types of ICME. For various types of
solar wind we study following relative characteristics: occurrence rate; mass,
momentum, energy and magnetic fluxes; probability of generation of magnetic
storm (geoeffectiveness) and efficiency of process of this generation. Obtained
results show that despite magnetic clouds have lower occurrence rate and lower
efficiency than CIR and Sheath they play an essential role in generation of
magnetic storms due to higher geoeffectiveness of storm generation (i.e higher
probability to contain large and long-term southward IMF Bz component).Comment: 23 pages, 4 figures, 3 tables, submitted to JGR special issue
"Response of Geospace to High-Speed Streams
Relationship between group sunspot number and Wolf sunspot number
Continuous wavelet transform and cross-wavelet transform have been used to
investigate the phase periodicity and synchrony of the monthly mean Wolf
() and group () sunspot numbers during the period of June 1795 to
December 1995. The Schwabe cycle is the only one common period in Rg and Rz,
but it is not well-defined in case of cycles 5-7 of Rg and in case of cycles 5
and 6 of . In fact, the Schwabe period is slightly different in
and before cycle 12, but from cycle 12 onwards it is almost the same
for the two time series. Asynchrony of the two time series is more obviously
seen in cycles 5 and 6 than in the following cycles, and usually more obviously
seen around the maximum time of a cycle than during the rest of the cycle.
is found to fit better in both amplitudes and peak epoch during
the minimum time time of a solar cycle than during the maximum time of the
cycle, which should be caused by their different definition, and around the
maximum time of a cycle, is usually less than . Asynchrony of
and should somewhat agree with different sunspot cycle
characteristics exhibited by themselves
A studying of solar-ENSO correlation with southern Brazil tree-ring index (1955?1994)
International audienceSolar activity, volcanic aerosol, El Niño-Southern Oscillation and global temperature anomalies effects on Southern Brazil tree growth rings are presented through multiple linear analysis. Linear correlations were made on annual, 10 year running averages and band pass filter. For annual averages, the correlation coefficients were low, and the 10 years running average correlations the coefficient correlations were much higher. The multiple regression of 2 to 5 year band pass filter indicates that 60% of the variance in tree ring index was explained by volcanic eruptions, Southern Oscillation Index and temperature anomalies. The multiple regression of 10 year running averages indicates that 84% of the variance in tree ring index was explained by solar activity and another time series. These results indicate that the effects of solar activity, volcanic eruptions, ENSO and temperature anomalies on tree rings are better seen on long timescales than volcanic eruption, ENSO and temperature anomaly
Recommended from our members
[Factors that contributed to quit smoking]
Sixteen smokers from Porto Alegre, Rio Grando do Sul, Brazil, in abstinence for more than six months were interviewed to investigate the factors that contribute for the success in quitting smoking. Interviews were examined by Content Analysis and seven categories emerged: determination to stop smoking, support received, social restrictions to smoking, benefits related to quitting smoking, information on the problems caused by smoking, elucidating campaigns, and the use of tricks. Results show that the individual's willingness to quit smoking overwhelms other factors, and that the smoker needs a lot of determination, as well as the support of society to be able to overcome the barrier of nicotine dependence
Analysis of cosmic ray variations observed by the CARPET in association with solar flares in 2011-2012
The CARPET cosmic ray detector was installed on April 2006 at CASLEO (Complejo Astronmico El Leoncito) at the Argentinean Andes (31.8S, 69.3W, 2550 m, Rc=9.65 GV). This instrument was developed within an international cooperation between the Lebedev Physical Institute RAS (LPI; Russia), the Centro de Radio Astronomia e Astrofsica Mackenzie (CRAAM; Brazil) and the Complejo Astronmico el Leoncito (CASLEO; Argentina). In this paper we present results of analysis of cosmic ray variations recorded by the CARPET during increased solar flare activity in 2011-2012. Available solar and interplanetary medium observational data obtained onboard GOES, FERMI, ISS, as well as cosmic ray measurements by ground-based neutron monitor network were also used in the present analysis.Fil: Makhmutov, V.. Lebedev Physical Institute; Rusia. Universidade Presbiteriana Mackenzie; BrasilFil: Raulin, J. P.. Universidade Presbiteriana Mackenzie; BrasilFil: De Mendonca, R. R. S.. National Institute for Space Research; BrasilFil: Bazilevskaya, G. A.. Lebedev Physical Institute; RusiaFil: Correia, E.. Universidade Presbiteriana Mackenzie; Brasil. National Institute for Space Research; BrasilFil: Kaufmann, Pierre. Universidade Presbiteriana Mackenzie; BrasilFil: Marun, Adolfo Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Complejo Astronómico "El Leoncito". Universidad Nacional de Córdoba. Complejo Astronómico "El Leoncito". Universidad Nacional de la Plata. Complejo Astronómico "El Leoncito". Universidad Nacional de San Juan. Complejo Astronómico "El Leoncito"; ArgentinaFil: Fernandez, German Enzo Leonel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Complejo Astronómico "El Leoncito". Universidad Nacional de Córdoba. Complejo Astronómico "El Leoncito". Universidad Nacional de la Plata. Complejo Astronómico "El Leoncito". Universidad Nacional de San Juan. Complejo Astronómico "El Leoncito"; ArgentinaFil: Echer, E.. National Institute for Space Research; Brasi
Are solar cycles predictable?
Various methods (or recipes) have been proposed to predict future solar
activity levels - with mixed success. Among these, some precursor methods based
upon quantities determined around or a few years before solar minimum have
provided rather high correlations with the strength of the following cycles.
Recently, data assimilation with an advection-dominated (flux-transport) dynamo
model has been proposed as a predictive tool, yielding remarkably high
correlation coefficients. After discussing the potential implications of these
results and the criticism that has been raised, we study the possible physical
origin(s) of the predictive skill provided by precursor and other methods. It
is found that the combination of the overlap of solar cycles and their
amplitude-dependent rise time (Waldmeier's rule) introduces correlations in the
sunspot number (or area) record, which account for the predictive skill of many
precursor methods. This explanation requires no direct physical relation
between the precursor quantity and the dynamo mechanism (in the sense of the
Babcock-Leighton scheme or otherwise).Comment: 5 pages, 2 figure
Multiwavelength Study on Solar and Interplanetary Origins of the Strongest Geomagnetic Storm of Solar Cycle 23
We study the solar sources of an intense geomagnetic storm of solar cycle 23
that occurred on 20 November 2003, based on ground- and space-based
multiwavelength observations. The coronal mass ejections (CMEs) responsible for
the above geomagnetic storm originated from the super-active region NOAA 10501.
We investigate the H-alpha observations of the flare events made with a 15 cm
solar tower telescope at ARIES, Nainital, India. The propagation
characteristics of the CMEs have been derived from the three-dimensional images
of the solar wind (i.e., density and speed) obtained from the interplanetary
scintillation data, supplemented with other ground- and space-based
measurements. The TRACE, SXI and H-alpha observations revealed two successive
ejections (of speeds ~350 and ~100 km/s), originating from the same filament
channel, which were associated with two high speed CMEs (~1223 and ~1660 km/s,
respectively). These two ejections generated propagating fast shock waves
(i.e., fast drifting type II radio bursts) in the corona. The interaction of
these CMEs along the Sun-Earth line has led to the severity of the storm.
According to our investigation, the interplanetary medium consisted of two
merging magnetic clouds (MCs) that preserved their identity during their
propagation. These magnetic clouds made the interplanetary magnetic field (IMF)
southward for a long time, which reconnected with the geomagnetic field,
resulting the super-storm (Dst_peak=-472 nT) on the Earth.Comment: 24 pages, 16 figures, Accepted for publication in Solar Physic
- …
