14,890 research outputs found
Teardown analysis for detecting shelf-life degradation
Analysis is guideline in examining component materials, analytically determining physical properties and chemical compositions, and developing control data necessary for ascertaining effects of environments and their influence on deterioration and degradation mechanisms
Numerical residual perturbation solutions applied to the problem of a close satellite of the smaller body in the restricted three-body problem
Numerical residual perturbation solution for prediction of satellite position in restricted three-body proble
The Moyal Sphere
We construct a family of constant curvature metrics on the Moyal plane and
compute the Gauss-Bonnet term for each of them. They arise from the conformal
rescaling of the metric in the orthonormal frame approach. We find a particular
solution, which corresponds to the Fubini-Study metric and which equips the
Moyal algebra with the geometry of a noncommutative sphere.Comment: 16 pages, 3 figure
Pure single photon generation by type-I PDC with backward-wave amplification
We explore a promising method of generating pure heralded single photons. Our
approach is based on parametric downconversion in a periodically-poled
waveguide. However, unlike conventional downconversion sources, the photon
pairs are counter-propagating: one travels with the pump beam in the forward
direction while the other is backpropagating towards the laser source. Our
calculations reveal that these downconverted two-photon states carry minimal
spectral correlations within each photon-pair. This approach offers the
possibility to employ a new range of downconversion processes and materials
like PPLN (previously considered unsuitable due to their unfavorable
phasematching properties) to herald pure single photons over a broad frequency
range.Comment: 8 pages, 3 figures, minor text changes and reformattin
A bright, pulsed two-mode squeezer
We report the realization of a bright ultrafast two-mode squeezer based on
type II parametric downconversion (PDC) in periodically poled
(PP-KTP) waveguides. It produces a pulsed two-mode squeezed
vacuum state: a photon-number entangled pair of truly single-mode pulses or, in
terms of continuous variables quantum optics, a pulsed, single mode
Einstein-Podolsky-Rosen (EPR) state in the telecom regime. We prove the single
mode character of our source by measuring its correlation function
and demonstrate a mean photon number of up to 2.5 per pulse, equivalent to 11dB
of two-mode squeezing.Comment: 4 pages, 3 figure
Interface hole-doping in cuprate-titanate superlattices
The electronic structure of interfaces between YBaCuO and
SrTiO is studied using local spin density approximation (LSDA) with
intra-atomic Coulomb repulsion (LSDA+U). We find a metallic state in
cuprate/titanate heterostructures with the hole carriers concentrated
substantially in the CuO-layers and in the first interface TiO and SrO
planes. This effective interface doping appears due to the polarity of
interfaces, caused by the first incomplete copper oxide unit cell.
Interface-induced high pre-doping of CuO-layers is a key mechanism
controlling the superconducting properties in engineered field-effect devices
realized on the basis of cuprate/titanate superlattices.Comment: 5 pages, 5 figure
Crossover from adiabatic to sudden interaction quenches in the Hubbard model: Prethermalization and nonequilibrium dynamics
The recent experimental implementation of condensed matter models in optical
lattices has motivated research on their nonequilibrium behavior. Predictions
on the dynamics of superconductors following a sudden quench of the pairing
interaction have been made based on the effective BCS Hamiltonian; however,
their experimental verification requires the preparation of a suitable excited
state of the Hubbard model along a twofold constraint: (i) a sufficiently
nonadiabatic ramping scheme is essential to excite the nonequilibrium dynamics,
and (ii) overheating beyond the critical temperature of superconductivity must
be avoided. For commonly discussed interaction ramps there is no clear
separation of the corresponding energy scales. Here we show that the matching
of both conditions is simplified by the intrinsic relaxation behavior of
ultracold fermionic systems: For the particular example of a linear ramp we
examine the transient regime of prethermalization [M. Moeckel and S. Kehrein,
Phys. Rev. Lett. 100, 175702 (2008)] under the crossover from sudden to
adiabatic switching using Keldysh perturbation theory. A real-time analysis of
the momentum distribution exhibits a temporal separation of an early energy
relaxation and its later thermalization by scattering events. For long but
finite ramping times this separation can be large. In the prethermalization
regime the momentum distribution resembles a zero temperature Fermi liquid as
the energy inserted by the ramp remains located in high energy modes. Thus
ultracold fermions prove robust to heating which simplifies the observation of
nonequilibrium BCS dynamics in optical lattices.Comment: 27 pages, 8 figures Second version with small modifications in
section
Spatially Selective and Reversible Doping Control in Cuprate Films
We describe a reversible, spatially-controlled doping method for cuprate
films. The technique has been used to create superconductor-antiferromagnetic
insulator-superconductor (S-AFI-S) junctions and optimally doped
superconductor-underdoped superconductor-optimally doped superconductor
(OS-US-OS) cuprate structures. We demonstrate how the S-AFI-S structure can be
employed to reliably measure the transport properties of the antiferromagnetic
insulator region at cryogenic temperatures using the superconductors as
seamless electrical leads. We also discuss applied and fundamental issues which
may be addressed with the structures created with this doping method. Although
it is implemented on a cuprate film (YBa2Cu3O7-delta) in this work, the method
can also be applied to any mixed-valence transition metal oxide whose physical
properties are determined by oxygen content.Comment: 14 pages, 4 figure
- …
