901 research outputs found

    Reinforcement Learning for Nash Equilibrium Generation

    Get PDF
    Copyright © 2015, International Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.We propose a new conceptual multi-agent framework which, given a game with an undesirable Nash equilibrium, will almost surely generate a new Nash equilibrium at some predetennined, more desirable pure action profile. The agent(s) targeted for reinforcement learn independently according to a standard model-free algorithm, using internally-generated states corresponding to high-level preference rankings over outcomes. We focus in particular on the case in which the additional reward can be considered as resulting from an internal (re-)appraisal, such that the new equilibrium is stable independent of the continued application of the procedure

    Introduction to self-attachment and its neural basis

    Get PDF

    Domain theory and differential calculus (functions of one variable)

    No full text
    Published versio

    Cultural management and government role

    Get PDF
    Culture plays an important role on human lives and it has been in four ancient civilizations of China, Iran, Egypt and Greece. The civilization achievements are normally categorized in two different groups of material and immaterial. Practical experience of the material, social objective is called as a civilization and the mental aspect of spiritual experiences, spiritual and personal is called culture. The purpose of this research is to find a framework for cross-cultural management. First, we define the cultural planning and we review the existing cultural examples in Iranian society and try to provide an overall analysis. The paper also investigates the role of government on creating adaptive culture within the society and explains that government must act as leadership in creating value added culture

    Strong Attractors of Hopfield Neural Networks to Model Attachment Types and Behavioural Patterns

    No full text
    Abstract — We study the notion of a strong attractor of a Hopfield neural model as a pattern that has been stored multiple times in the network, and examine its properties using basic mathematical techniques as well as a variety of simulations. It is proposed that strong attractors can be used to model attachment types in developmental psychology as well as behavioural patterns in psychology and psychotherapy. We study the stability and basins of attraction of strong attractors in the presence of other simple attractors and show that they are indeed more stable with a larger basin of attraction compared with simple attractors. We also show that the perturbation of a strong attractor by random noise results in a cluster of attractors near the original strong attractor measured by the Hamming distance. We investigate the stability and basins of attraction of such clusters as the noise increases and establish that the unfolding of the strong attractor, leading to its breakup, goes through three different stages. Finally the relation between strong attractors of different multiplicity and their influence on each other are studied and we show how the impact of a strong attractor can be replaced with that of a new strong attractor. This retraining of the network is proposed as a model of how attachment types and behavioural patterns can undergo change. I

    Frequency-aware rate adaptation and MAC protocol

    Get PDF
    There has been burgeoning interest in wireless technologies that can use wider frequency spectrum. Technology advances, such as 802.11n and ultra-wideband (UWB), are pushing toward wider frequency bands. The analog-to-digital TV transition has made 100-250 MHz of digital whitespace bandwidth available for unlicensed access. Also, recent work on WiFi networks has advocated discarding the notion of channelization and allowing all nodes to access the wide 802.11 spectrum in order to improve load balancing. This shift towards wider bands presents an opportunity to exploit frequency diversity. Specifically, frequencies that are far from each other in the spectrum have significantly different SNRs, and good frequencies differ across sender-receiver pairs. This paper presents FARA, a combined frequency-aware rate adaptation and MAC protocol. FARA makes three departures from conventional wireless network design: First, it presents a scheme to robustly compute per-frequency SNRs using normal data transmissions. Second, instead of using one bit rate per link, it enables a sender to adapt the bitrate independently across frequencies based on these per-frequency SNRs. Third, in contrast to traditional frequency-oblivious MAC protocols, it introduces a MAC protocol that allocates to a sender-receiver pair the frequencies that work best for that pair. We have implemented FARA in FPGA on a wideband 802.11-compatible radio platform. Our experiments reveal that FARA provides a 3.1x throughput improvement in comparison to frequency-oblivious systems that occupy the same spectrum.Industrial Technology Research InstituteNational Science Foundation (U.S.)
    corecore