319 research outputs found
Rcpp: Seamless R and C++ Integration
The Rcpp package simplifies integrating C++ code with R. It provides a consistent C++ class hierarchy that maps various types of R objects (vectors, matrices, functions, environments, . . . ) to dedicated C++ classes. Object interchange between R and C++ is managed by simple, flexible and extensible concepts which include broad support for C++ Standard Template Library idioms. C++ code can both be compiled, linked and loaded on the fly, or added via packages. Flexible error and exception code handling is provided. Rcpp substantially lowers the barrier for programmers wanting to combine C++ code with R.
State of the Art in Parallel Computing with R
R is a mature open-source programming language for statistical computing and graphics. Many areas of statistical research are experiencing rapid growth in the size of data sets. Methodological advances drive increased use of simulations. A common approach is to use parallel computing. This paper presents an overview of techniques for parallel computing with R on computer clusters, on multi-core systems, and in grid computing. It reviews sixteen different packages, comparing them on their state of development, the parallel technology used, as well as on usability, acceptance, and performance. Two packages (snow, Rmpi) stand out as particularly suited to general use on computer clusters. Packages for grid computing are still in development, with only one package currently available to the end user. For multi-core systems five different packages exist, but a number of issues pose challenges to early adopters. The paper concludes with ideas for further developments in high performance computing with R. Example code is available in the appendix.
State-of-the-Art in Parallel Computing with R
R is a mature open-source programming language for statistical computing and graphics. Many areas of statistical research are experiencing rapid growth in the size of data sets. Methodological advances drive increased use of simulations. A common approach is to use parallel computing. This paper presents an overview of techniques for parallel computing with R on computer clusters, on multi-core systems, and in grid computing. It reviews sixteen different packages, comparing them on their state of development, the parallel technology used, as well as on usability, acceptance, and performance. Two packages (snow, Rmpi) stand out as particularly useful for general use on computer clusters. Packages for grid computing are still in development, with only one package currently available to the end user. For multi-core systems four different packages exist, but a number of issues pose challenges to early adopters. The paper concludes with ideas for further developments in high performance computing with R. Example code is available in the appendix
Microstructural parameter estimation in vivo using diffusion MRI and structured prior information.
Diffusion MRI has recently been used with detailed models to probe tissue microstructure. Much of this work has been performed ex vivo with powerful scanner hardware, to gain sensitivity to parameters such as axon radius. By contrast, performing microstructure imaging on clinical scanners is extremely challenging
- …
