296 research outputs found

    Causality constraints in AdS/CFT from conformal collider physics and Gauss-Bonnet gravity

    Full text link
    We explore the relation between positivity of the energy constraints in conformal field theories and causality in their dual gravity description. Our discussion involves CFTs with different central charges whose description, in the gravity side, requires the inclusion of quadratic curvature corrections. It is enough, indeed, to consider the Gauss-Bonnet term. We find that both sides of the AdS/CFT correspondence impose a restriction on the Gauss-Bonnet coupling. In the case of 6d supersymmetric CFTs, we show the full matching of these restrictions. We perform this computation in two ways. First by considering a thermal setup in a black hole background. Second by scrutinizing the scattering of gravitons with a shock wave in AdS. The different helicities provide the corresponding lower and upper bounds. We generalize these results to arbitrary higher dimensions and comment on some hints and puzzles they prompt regarding the possible existence of higher dimensional CFTs and the extent to which the AdS/CFT correspondence would be valid for them.Comment: 31 pages, 5 figures; v2: typos fixed, cosmetic amendments and references adde

    Causality in AdS/CFT and Lovelock theory

    Full text link
    We explore the constraints imposed on higher curvature corrections of the Lovelock type due to causality restrictions in the boundary of asymptotically AdS space-time. In the framework of AdS/CFT, this is related to positivity of the energy constraints that arise in conformal collider physics. We present explicit analytic results that fully address these issues for cubic Lovelock gravity in arbitrary dimensions and give the formal analytic results that comprehend general Lovelock theory. The computations can be performed in two ways, both by considering a thermal setup in a black hole background and by studying the scattering of gravitons with a shock wave in AdS. We show that both computations coincide in Lovelock theory. The different helicities, as expected, provide the boundaries defining the region of allowed couplings. We generalize these results to arbitrary higher dimensions and discuss their consequences on the shear viscosity to energy density ratio of CFT plasmas, the possible existence of Boulware-Deser instabilities in Lovelock theory and the extent to which the AdS/CFT correspondence might be valid for arbitrary dimensions.Comment: 35 pages, 20 figures; v2: minor amendments and clarifications include

    Lovelock theories, holography and the fate of the viscosity bound

    Get PDF
    We consider Lovelock theories of gravity in the context of AdS/CFT. We show that, for these theories, causality violation on a black hole background can occur well in the interior of the geometry, thus posing more stringent constraints than were previously found in the literature. Also, we find that instabilities of the geometry can appear for certain parameter values at any point in the geometry, as well in the bulk as close to the horizon. These new sources of causality violation and instability should be related to CFT features that do not depend on the UV behavior. They solve a puzzle found previously concerning unphysical negative values for the shear viscosity that are not ruled out solely by causality restrictions. We find that, contrary to previous expectations, causality violation is not always related to positivity of energy. Furthermore, we compute the bound for the shear viscosity to entropy density ratio of supersymmetric conformal field theories from d=4 till d=10 - i.e., up to quartic Lovelock theory -, and find that it behaves smoothly as a function of d. We propose an approximate formula that nicely fits these values and has a nice asymptotic behavior when d goes to infinity for any Lovelock gravity. We discuss in some detail the latter limit. We finally argue that it is possible to obtain increasingly lower values for the shear viscosity to entropy density ratio by the inclusion of more Lovelock terms.Comment: 42 pages, 17 figures, JHEP3.cls. v2: reference adde

    Molecular and electronic structure of terminal and alkali metal-capped uranium(V) nitride complexes

    Get PDF
    Determining the electronic structure of actinide complexes is intrinsically challenging because inter-electronic repulsion, crystal field, and spin–orbit coupling effects can be of similar magnitude. Moreover, such efforts have been hampered by the lack of structurally analogous families of complexes to study. Here we report an improved method to U≡N triple bonds, and assemble a family of uranium(V) nitrides. Along with an isoelectronic oxo, we quantify the electronic structure of this 5f1 family by magnetometry, optical and electron paramagnetic resonance (EPR) spectroscopies and modelling. Thus, we define the relative importance of the spin–orbit and crystal field interactions, and explain the experimentally observed different ground states. We find optical absorption linewidths give a potential tool to identify spin–orbit coupled states, and show measurement of UV···UV super-exchange coupling in dimers by EPR. We show that observed slow magnetic relaxation occurs via two-phonon processes, with no obvious correlation to the crystal field

    The prevention of type 2 diabetes

    Get PDF
    Type 2 diabetes mellitus (T2DM) affects more than 7% of adults in the US and leads to substantial personal and economic burden. In prediabetic states insulin secretion and action—potential targets of preventive interventions—are impaired. In trials lifestyle modification (i.e. weight loss and exercise) has proven effective in preventing incident T2DM in high-risk groups, although weight loss has the greatest effect. Various medications (e.g. metformin, thiazolidinediones and acarbose) can also prevent or delay T2DM. Whether diabetes-prevention strategies also ultimately prevent the development of diabetic vascular complications is unknown, but cardiovascular risk factors are favorably affected. Preventive strategies that can be implemented in routine clinical settings have been developed and evaluated. Widespread application has, however, been limited by local financial considerations, even though cost-effectiveness might be achieved at the population level

    Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping

    Get PDF
    To facilitate fine-scale phenotyping of whole specimens, we describe here a set of tissue fixation-embedding, detergent-clearing and staining protocols that can be used to transform excised organs and whole organisms into optically transparent samples within 1–2 weeks without compromising their cellular architecture or endogenous fluorescence. PACT (passive CLARITY technique) and PARS (perfusion-assisted agent release in situ) use tissue-hydrogel hybrids to stabilize tissue biomolecules during selective lipid extraction, resulting in enhanced clearing efficiency and sample integrity. Furthermore, the macromolecule permeability of PACT- and PARS-processed tissue hybrids supports the diffusion of immunolabels throughout intact tissue, whereas RIMS (refractive index matching solution) grants high-resolution imaging at depth by further reducing light scattering in cleared and uncleared samples alike. These methods are adaptable to difficult-to-image tissues, such as bone (PACT-deCAL), and to magnified single-cell visualization (ePACT). Together, these protocols and solutions enable phenotyping of subcellular components and tracing cellular connectivity in intact biological networks

    fMRI scanner noise interaction with affective neural processes

    Get PDF
    The purpose of the present study was the investigation of interaction effects between functional MRI scanner noise and affective neural processes. Stimuli comprised of psychoacoustically balanced musical pieces, expressing three different emotions (fear, neutral, joy). Participants (N=34, 19 female) were split into two groups, one subjected to continuous scanning and another subjected to sparse temporal scanning that features decreased scanner noise. Tests for interaction effects between scanning group (sparse/quieter vs continuous/noisier) and emotion (fear, neutral, joy) were performed. Results revealed interactions between the affective expression of stimuli and scanning group localized in bilateral auditory cortex, insula and visual cortex (calcarine sulcus). Post-hoc comparisons revealed that during sparse scanning, but not during continuous scanning, BOLD signals were significantly stronger for joy than for fear, as well as stronger for fear than for neutral in bilateral auditory cortex. During continuous scanning, but not during sparse scanning, BOLD signals were significantly stronger for joy than for neutral in the left auditory cortex and for joy than for fear in the calcarine sulcus. To the authors' knowledge, this is the first study to show a statistical interaction effect between scanner noise and affective processes and extends evidence suggesting scanner noise to be an important factor in functional MRI research that can affect and distort affective brain processes

    Errors in recall of age at first sex

    Get PDF
    Aims: To measure the degree and direction of errors in recall of age at first sex. Method: Participants were initially recruited in 1994–1995 (Wave I) with 3 subsequent follow-ups in: 1996 (Wave II); 2001– 2002 (Wave III); and 2007–2008 (Wave IV). Participants' individual errors in recall of their age at first sex at Wave IV were estimated by the paired difference between responses given for age at first sex in Wave I and Wave IV (recalled age at first sex obtained at Wave IV minus the age at first sex obtained at Wave I). Results: The mean of the recall-estimation of age at first sex at Wave IV was found to be slightly increased comparing to the age at first sex at Wave I (less than 1 year). The errors in the recalled age at first sex tended to increase in participants who had their first sex younger or older than the average, and the recalled age at first sex tended to bias towards the mean (i.e. participants who had first sex younger than the average were more likely to recall an age at first sex that was older than the age, and vice versa). Conclusions: In this U.S. population-based sample, the average recall error for age at first sex was small. However, the accuracy of recalled information varied significantly among subgroup populations

    Efficacy and safety of telithromycin 800 mg once daily for 7 days in community-acquired pneumonia: an open-label, multicenter study

    Get PDF
    BACKGROUND: Community-acquired pneumonia (CAP) remains a major cause of morbidity and mortality throughout the world. Telithromycin (a new ketolide) has shown good in vitro activity against the key causative pathogens of CAP, including S pneumoniae resistant to penicillin and/or macrolides. METHODS: The efficacy and safety of telithromycin 800 mg orally once daily for 7 days in the treatment of CAP were assessed in an open-label, multicenter study of 442 adults. RESULTS: Of 149 microbiologically evaluable patients, 57 (9 bacteremic) had Streptococcus pneumoniae. Of the 57 S pneumoniae pathogens isolated in these patients, 9 (2 bacteremic) were penicillin- or erythromycin-resistant; all 57 were susceptible to telithromycin and were eradicated. Other pathogens and their eradication rates were: Haemophilus influenzae (96%), Moraxella catarrhalis (100%), Staphylococcus aureus (80%), and Legionella spp. (100%). The overall bacteriologic eradication rate was 91.9%. Of the 357 clinically evaluable patients, clinical cure was achieved in 332 (93%). In the 430 patients evaluable for safety, the most common drug-related adverse events were diarrhea (8.1%) and nausea (5.8%). CONCLUSION: Telithromycin 800 mg once daily for 7 days is an effective and well-tolerated oral monotherapy and offers a new treatment option for CAP patients, including those with resistant S pneumoniae

    Mathematical modeling of solid cancer growth with angiogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer arises when within a single cell multiple malfunctions of control systems occur, which are, broadly, the system that promote cell growth and the system that protect against erratic growth. Additional systems within the cell must be corrupted so that a cancer cell, to form a mass of any real size, produces substances that promote the growth of new blood vessels. Multiple mutations are required before a normal cell can become a cancer cell by corruption of multiple growth-promoting systems.</p> <p>Methods</p> <p>We develop a simple mathematical model to describe the solid cancer growth dynamics inducing angiogenesis in the absence of cancer controlling mechanisms.</p> <p>Results</p> <p>The initial conditions supplied to the dynamical system consist of a perturbation in form of pulse: The origin of cancer cells from normal cells of an organ of human body. Thresholds of interacting parameters were obtained from the steady states analysis. The existence of two equilibrium points determine the strong dependency of dynamical trajectories on the initial conditions. The thresholds can be used to control cancer.</p> <p>Conclusions</p> <p>Cancer can be settled in an organ if the following combination matches: better fitness of cancer cells, decrease in the efficiency of the repairing systems, increase in the capacity of sprouting from existing vascularization, and higher capacity of mounting up new vascularization. However, we show that cancer is rarely induced in organs (or tissues) displaying an efficient (numerically and functionally) reparative or regenerative mechanism.</p
    corecore