6,931 research outputs found
Microglial K(+) channel expression in young adult and aged mice.
The K(+) channel expression pattern of microglia strongly depends on the cells' microenvironment and has been recognized as a sensitive marker of the cells' functional state. While numerous studies have been performed on microglia in vitro, our knowledge about microglial K(+) channels and their regulation in vivo is limited. Here, we have investigated K(+) currents of microglia in striatum, neocortex and entorhinal cortex of young adult and aged mice. Although almost all microglial cells exhibited inward rectifier K(+) currents upon membrane hyperpolarization, their mean current density was significantly enhanced in aged mice compared with that determined in young adult mice. Some microglial cells additionally exhibited outward rectifier K(+) currents in response to depolarizing voltage pulses. In aged mice, microglial outward rectifier K(+) current density was significantly larger than in young adult mice due to the increased number of aged microglial cells expressing these channels. Aged dystrophic microglia exhibited outward rectifier K(+) currents more frequently than aged ramified microglia. The majority of microglial cells expressed functional BK-type, but not IK- or SK-type, Ca(2+) -activated K(+) channels, while no differences were found in their expression levels between microglia of young adult and aged mice. Neither microglial K(+) channel pattern nor K(+) channel expression levels differed markedly between the three brain regions investigated. It is concluded that age-related changes in microglial phenotype are accompanied by changes in the expression of microglial voltage-activated, but not Ca(2+) -activated, K(+) channels
Space shuttle: Static aerodynamic and control investigation of an expendable second stage with payload alone and with delta wing booster (B-15B-1)
Aerodynamic force and moment coefficients for scale model of expendable second stage modified S-2 alone and mounted piggyback on space shuttle booster from Mach 0.6 to 4.9
Enhancement of Pairing Correlation by t' in the Two-Dimensional Extende d t-J Model
We investigate the effects of the next-nearest-neighbor () and the
third-nearest-neighbor (t") hopping terms on superconductivity (SC) correlation
in the 2D hole-doped extended t-J model based on the variational Monte-Carlo
(VMC), mean-field (MF) calculation, and exact diagonalization (ED) method.
Despite of the diversity of the methods employed, the results all point to a
consistent conclusion: While the d-wave SC correlation is slightly suppressed
by t' and t" in underdoped regions, it is greatly enhanced in the optimal and
overdoped regions. The optimal T_c is a result upon balance of these two
opposite trends.Comment: 5 figures, submitted to Phys. Rev. Let
Spin state transition in LaCoO3 by variational cluster approximation
The variational cluster approximation is applied to the calculation of
thermodynamical quantities and single-particle spectra of LaCoO3. Trial
self-energies and the numerical value of the Luttinger-Ward functional are
obtained by exact diagonalization of a CoO6 cluster. The VCA correctly predicts
LaCoO3 as a paramagnetic insulator and a gradual and relatively smooth increase
of the occupation of high-spin Co3+ ions causes the temperature dependence of
entropy and magnetic susceptibility. The single particle spectral function
agrees well with experiment, the experimentally observed temperature dependence
of photoelectron spectra is reproduced satisfactorily. Remaining discrepancies
with experiment highlight the importance of spin orbit coupling and local
lattice relaxation.Comment: Revtex file with 10 eps figure
Correlated band structure of NiO, CoO and MnO by variational cluster approximation
The variational cluster approximation proposed by Potthoff is applied to the
calculation of the single-particle spectral function of the transition metal
oxides MnO, CoO and NiO. Trial self-energies and the numerical value of the
Luttinger-Ward functional are obtained by exact diagonalization of a
TMO6-cluster. The single-particle parameters of this cluster serve as
variational parameters to construct a stationary point of the grand potential
of the lattice system. The stationary point is found by a crossover procedure
which allows to go continuously from an array of disconnected clusters to the
lattice system. The self-energy is found to contain irrelevant degrees of
freedom which have marginal impact on the grand potential and which need to be
excluded to obtain meaningful results. The obtained spectral functions are in
good agreement with experimental data.Comment: 14 pages, 17 figure
Lysophosphatidylcholine activates caspase-1 in microglia via a novel pathway involving two inflammasomes.
Inflammasomes regulate microglial caspase-1 activation and subsequent neuroinflammatory processes in brain pathology. In the present study, we have identified inflammasomes causing caspase-1 activation following stimulation of microglia with lysophosphatidylcholine (LPC), a proinflammatory lipid generated under pathological conditions in the brain. LPC-induced caspase-1 activation in microglia was found to depend on LPS prestimulation, inflammasome NLRP3 and adaptor molecule ASC. Furthermore, knockdown of inflammasome NLRC4 inhibited LPC-stimulated caspase-1 activity in microglia, suggesting the requirement of two inflammasomes for optimal caspase-1 activity
- …
