212 research outputs found
Constraints on thermal conductivity in the merging cluster Abell 2146
The cluster of galaxies Abell 2146 is undergoing a major merger and is an ideal cluster to study intracluster medium (ICM) physics, as it has a simple geometry with the merger axis in the plane of the sky, its distance allows us to resolve features across the relevant scales and its temperature lies within Chandra’s sensitivity. Gas from the cool core of the subcluster has been partially stripped into a tail of gas, which gives a unique opportunity to look at the survival of such gas and determine the rate of conduction in the ICM. We use deep 2.4-Ms Chandra observations of Abell 2146 to produce a high spatial resolution map of the temperature structure along a plume in the ram-pressure stripped tail, described by a partial cone, which is distinguishable from the hot ambient gas. Previous studies of conduction in the ICM typically rely on estimates of the survival time for key structures, such as cold fronts. Here we use detailed hydrodynamical simulations of Abell 2146 to determine the flow velocities along the stripped plume and measure the time-scale of the temperature increase along its length. We find that conduction must be highly suppressed by multiple orders of magnitude compared to the Spitzer rate, as the energy used is about 1 per cent of the energy available. We discuss magnetic draping around the core as a possible mechanism for suppressing conduction
An infrared survey of brightest cluster galaxies: Paper I
We report on an imaging survey with the Spitzer Space Telescope of 62
brightest cluster galaxies with optical line emission. These galaxies are
located in the cores of X-ray luminous clusters selected from the ROSAT All-Sky
Survey. We find that about half of these sources have a sign of excess infrared
emission; 22 objects out of 62 are detected at 70 microns, 18 have 8 to 5.8
micron flux ratios above 1.0 and 28 have 24 to 8 micron flux ratios above 1.0.
Altogether 35 of 62 objects in our survey exhibit at least one of these signs
of infrared excess. Four galaxies with infrared excesses have a 4.5/3.6 micron
flux ratio indicating the presence of hot dust, and/or an unresolved nucleus at
8 microns. Three of these have high measured [OIII](5007A)/Hbeta flux ratios
suggesting that these four, Abell 1068, Abell 2146, and Zwicky 2089, and
R0821+07, host dusty active galactic nuclei (AGNs). 9 objects (including the
four hosting dusty AGNs) have infrared luminosities greater than 10^11 L_sol
and so can be classified as luminous infrared galaxies (LIRGs). Excluding the
four systems hosting dusty AGNs, the excess mid-infrared emission in the
remaining brightest cluster galaxies is likely related to star formation.Comment: accepted for publication in ApJ
LoCuSS:the connection between brightest cluster galaxy activity, gas cooling and dynamical disturbance of X-ray cluster cores
We study the distribution of projected offsets between the cluster X-ray centroid and the brightest cluster galaxy (BCG) for 65 X-ray-selected clusters from the Local Cluster Substructure Survey, with a median redshift of z= 0.23. We find a clear correlation between X-ray/BCG projected offset and the logarithmic slope of the cluster gas density profile at 0.04r500(α), implying that more dynamically disturbed clusters have weaker cool cores. Furthermore, there is a close correspondence between the activity of the BCG, in terms of detected Hα and radio emission, and the X-ray/BCG offset, with the line-emitting galaxies all residing in clusters with X-ray/BCG offsets of ≤15 kpc. Of the BCGs with α < −0.85 and an offset <0.02r500, 96 per cent (23/24) have optical emission and 88 per cent (21/24) are radio active, while none has optical emission outside these criteria. We also study the cluster gas fraction (fgas) within r500 and find a significant correlation with X-ray/BCG projected offset. The mean fgas of the ‘small offset’ clusters (<0.02r500) is 0.106 ± 0.005 (σ= 0.03) compared to 0.145 ± 0.009 (σ= 0.04) for those with an offset >0.02r500, indicating that the total mass may be systematically underestimated in clusters with larger X-ray/BCG offsets. Our results imply a link between cool core strength and cluster dynamical state consistent with the view that cluster mergers can significantly perturb cool cores, and set new constraints on models of the evolution of the intracluster medium
The behaviour of dark matter associated with 4 bright cluster galaxies in the 10kpc core of Abell 3827
Galaxy cluster Abell 3827 hosts the stellar remnants of four almost equally
bright elliptical galaxies within a core of radius 10kpc. Such corrugation of
the stellar distribution is very rare, and suggests recent formation by several
simultaneous mergers. We map the distribution of associated dark matter, using
new Hubble Space Telescope imaging and VLT/MUSE integral field spectroscopy of
a gravitationally lensed system threaded through the cluster core. We find that
each of the central galaxies retains a dark matter halo, but that (at least)
one of these is spatially offset from its stars. The best-constrained offset is
1.62+/-0.48kpc, where the 68% confidence limit includes both statistical error
and systematic biases in mass modelling. Such offsets are not seen in field
galaxies, but are predicted during the long infall to a cluster, if dark matter
self-interactions generate an extra drag force. With such a small physical
separation, it is difficult to definitively rule out astrophysical effects
operating exclusively in dense cluster core environments - but if interpreted
solely as evidence for self-interacting dark matter, this offset implies a
cross-section sigma/m=(1.7+/-0.7)x10^{-4}cm^2/g x (t/10^9yrs)^{-2}, where t is
the infall duration.Comment: 15 pages, 9 figure
Constraining Cosmological Topology via Highly Luminous X-ray Clusters
The topology of the observable Universe is not yet known. The most
significant observational sign of a non-trivial topology would be multiple
images (``ghosts'') of a single object at (in general) different sky positions
and redshifts.
It is pointed out that the previous search by Gott (1980) for ghost images of
the Coma cluster can be extended by using highly X-ray luminous clusters of
galaxies. This is likely to be more efficient than with other astrophysical
objects viewable on these scales since (1) X-ray clusters would be at least as
easy to identify if viewed from other angles as any other objects and (2) the
X-ray emitting thermally heated gas is likely to be simpler than for other
objects.
Possibilities that the highly luminous cluster RXJ~1347.5-1145 ()
has a ``ghost image'' at lower redshift are analysed. It is noted that
RXJ~1347.5-1145, the Coma cluster and the cluster CL~09104+4109 form nearly a
right angle () with arms of nearly identical length
( and Mpc respectively) for
curvature (). This is a clue that the three
clusters could be ghost images of one and the same cluster, for a hypertoroidal
topology. However, several arguments are presented that this relation is not
physical.Comment: 8 pages, LaTeX, requires mn.sty, 3 figures, submitted to MNRA
Bayesian modelling of the cool core galaxy group NGC 4325
We present an X-ray analysis of the radio-quiet cool-core galaxy group NGC
4325 (z=0.026) based on Chandra and ROSAT observations. The Chandra data were
analysed using XSPEC deprojection, 2D spectral mapping and forward-fitting with
parametric models. Additionally, a Markov chain Monte Carlo method was used to
perform a joint Bayesian analysis of the Chandra and ROSAT data. The results of
the various analysis methods are compared, particularly those obtained by
forward-fitting and deprojection. The spectral mapping reveals the presence of
cool gas displaced up to 10 kpc from the group centre. The Chandra X-ray
surface brightness shows the group core to be highly disturbed, and indicates
the presence of two small X-ray cavities within 15 kpc of the group core. The
XSPEC deprojection analysis shows that the group has a particularly steep
entropy profile, suggesting that an AGN outburst may be about to occur. With
the evidence of prior AGN activity, but with no radio emission currently
observed, we suggest that the group in in a pre-outburst state, with the
cavities and displaced gas providing evidence of a previous, weak AGN outburst.Comment: 12 pages, 10 figures; accepted for publication in MNRA
- …
