5,864 research outputs found

    Cognitive and mood improvements following acute supplementation with purple grape juice in healthy young adults

    Get PDF
    Purpose - Berry-derived phenolic compounds found in grapes have been associated with a number of health benefits, including the augmentation of human brain function and cognition. Previous intervention studies of Concord grape juice have demonstrated improvement to memory and driving ability following 3- to 4-month supplementation in middle-aged and older adults. However, no studies to date have demonstrated acute cognitive benefits of grape juice, and investigation of these effects in young adults is lacking. Methods - This randomised, placebo-controlled, double-blind, counterbalanced-crossover study, assessed the effects of 230 ml purple grape juice or sugar-matched control in 20 healthy young adults. Computerised measures of episodic memory, working memory, attention and mood were completed at baseline and following a 20-min absorption period. Results - Purple grape juice significantly improved reaction time on a composite attention measure (p = 0.047) and increased calm ratings (p = 0.046) when compared to placebo. Order effects also indicated an enduring positive effect on pre-dose memory reaction time (p = 0.018) and post-dose calm ratings (p = 0.019) when purple grape was consumed first. Conclusions - These findings in a small sample of healthy young adults suggest that purple grape juice can acutely enhance aspects of cognition and mood. No significant effects of juice were observed on memory measures, suggesting that these may be less susceptible to manipulation following acute supplementation in healthy young adults. Potential mechanisms underlying these effects include modulation of cerebral blood flow, glucoregulation and inhibition of monoamine oxidase activity, all of which require further exploration

    Resonant tunneling diode oscillators for optical communications

    Get PDF
    The ability to use resonant tunneling diodes (RTDs) as both transmitters and receivers is an emerging topic, especially with regards to wireless communications. Successful data transmission has been achieved using electronic RTDs with carrier frequencies exceeding 0.3 THz. Specific optical-based RTDs, which act as photodetectors, have been developed by adjusting the device structure to include a light absorption layer and small optical windows on top of the device to allow direct optical access. This also allows the optical signal to directly modulate the RTD oscillation. Both types of RTD oscillators will allow for seamless integration of high frequency radio and optical fiber networks.European Union's Horizon research and innovation programme [645369

    On Kinematic Substructure in the Sextans Dwarf Spheroidal Galaxy

    Full text link
    We present multifiber echelle radial velocity results for 551 stars in the Sextans dwarf spheroidal galaxy and identify 294 stars as probable Sextans members. The projected velocity dispersion profile of the binned data remains flat to a maximum angular radius of 3030^{\prime}. We introduce a nonparametric technique for estimating the projected velocity dispersion surface, and use this to search for kinematic substructure. Our data do not confirm previous reports of a kinematically distinct stellar population at the Sextans center. Instead we detect a region near the Sextans core radius that is kinematically colder than the overall Sextans sample with 95% confidence.Comment: accepted for publication in ApJ Letters; 4 figures (2 color

    Design and structural optimisation of a tractor mounted telescopic boom crane

    Get PDF
    In this research, an application algorithm, which can be used in computer-aided design/engineering (CAD/CAE) and structural optimisation-based design studies of agricultural machineries, is introduced. This developed algorithm has been put in practice in a case study for a tractor mounted telescopic boom crane. The algorithm consists of both numerical and experimental methods and it includes material testing, three-dimensional (3D) computer-aided design and finite-element method (FEM)-based analysis procedures, structural optimisation strategy, physical prototyping, physical testing and design validation procedures. Following the visual and physical validation procedures carried out in the case study, the crane’s physical prototype was manufactured and the optimised design was approved for ongoing production. The study provides a unique CAD/CAE and experimentally driven total design pathway for similar products, which contributes to further research into the utilisation of engineering simulation technology for agricultural machinery design, analysis and related manufacturing subjects

    A new method for imaging nuclear threats using cosmic ray muons

    Full text link
    Muon tomography is a technique that uses cosmic ray muons to generate three dimensional images of volumes using information contained in the Coulomb scattering of the muons. Advantages of this technique are the ability of cosmic rays to penetrate significant overburden and the absence of any additional dose delivered to subjects under study above the natural cosmic ray flux. Disadvantages include the relatively long exposure times and poor position resolution and complex algorithms needed for reconstruction. Here we demonstrate a new method for obtaining improved position resolution and statistical precision for objects with spherical symmetry

    Managing water through change and uncertainty: comparing lessons from the adaptive co-management literature to recent policy developments in England

    Get PDF
    Water management is set to become increasingly variable and unpredictable, in particular because of climate change. This paper investigates the extent to which water policy in England provides an enabling environment for ‘adaptive co-management’, which its proponents claim can achieve the dual objective of ecosystem protection and livelihood sustainability under conditions of change and uncertainty. Five policy categories are derived from a literature review, and are used to conduct a directed content analysis of seven key water policy documents. The findings reveal that although, in part, English water policy serves as an enabling environment for adaptive co-management, there is a level of discrepancy between substantive aspects of the five policy categories and water policy in England. Addressing these discrepancies will be important if English water policy is to allow for the emergence of processes, like adaptive co-management, that are capable of coping with the challenges that lie ahead

    Wiring cost and topological participation of the mouse brain connectome.

    Get PDF
    Brain connectomes are topologically complex systems, anatomically embedded in 3D space. Anatomical conservation of "wiring cost" explains many but not all aspects of these networks. Here, we examined the relationship between topology and wiring cost in the mouse connectome by using data from 461 systematically acquired anterograde-tracer injections into the right cortical and subcortical regions of the mouse brain. We estimated brain-wide weights, distances, and wiring costs of axonal projections and performed a multiscale topological and spatial analysis of the resulting weighted and directed mouse brain connectome. Our analysis showed that the mouse connectome has small-world properties, a hierarchical modular structure, and greater-than-minimal wiring costs. High-participation hubs of this connectome mediated communication between functionally specialized and anatomically localized modules, had especially high wiring costs, and closely corresponded to regions of the default mode network. Analyses of independently acquired histological and gene-expression data showed that nodal participation colocalized with low neuronal density and high expression of genes enriched for cognition, learning and memory, and behavior. The mouse connectome contains high-participation hubs, which are not explained by wiring-cost minimization but instead reflect competitive selection pressures for integrated network topology as a basis for higher cognitive and behavioral functions.Funding was provided by a NARSAD Young Investigator award and Isaac Newton Trust (to M.R.); a Rubicon Fellowship (to R.J.F.Y.); the Medical Research Council and the Wellcome Trust (Behavioural & Clinical Neuroscience Institute); and the National Institute for Health Research Cambridge Biomedical Research Centre (high-performance computing facilities).This is the accepted manuscript of a paper published in the Proceedings of the National Academy of Sciences (Rubinov M, Ypma RJF, Watson C, Bullmore ET, PNAS, 2015, 112, 10032-10037, doi:10.1073/pnas.1420315112). The final version is available at http://dx.doi.org/10.1073/pnas.142031511

    Streams, Structures, Spaces, Scenarios, Societies (5S): A Formal Model for Digital Libraries

    Get PDF
    Digital libraries (DLs) are complex information systems and therefore demand formal foundations lest development efforts diverge and interoperability suffers. In this paper, we propose the fundamental abstractions of Streams, Structures, Spaces, Scenarios, and Societies (5S), which allow us to define digital libraries rigorously and usefully. Streams are sequences of arbitrary items used to describe both static and dynamic (e.g., video) content. Structures can be viewed as labeled directed graphs, which impose organization. Spaces are sets with operations on those sets that obey certain constraints. Scenarios consist of sequences of events or actions that modify states of a computation in order to accomplish a functional requirement. Societies are sets of entities and activities and the relationships between and among them. Together these abstractions provide a formal foundation to define, relate, and unify concepts - among others, of digital objects, metadata, collections, and services - required to formalize and elucidate "digital libraries". The applicability, versatility and unifying power of the 5S model are demonstrated through its use in three distinct applications: building and interpretation of a DL taxonomy, informal and formal analysis of case studies of digital libraries (NDLTD and OAI), and utilization as a formal basis for a DL description language

    Comparison of quantum mechanical and classical trajectory calculations of cross sections for ion-atom impact ionization of negative - and positive -ions for heavy ion fusion applications

    Full text link
    Stripping cross sections in nitrogen have been calculated using the classical trajectory approximation and the Born approximation of quantum mechanics for the outer shell electrons of 3.2GeV I^{-} and Cs+^{+} ions. A large difference in cross section, up to a factor of six, calculated in quantum mechanics and classical mechanics, has been obtained. Because at such high velocities the Born approximation is well validated, the classical trajectory approach fails to correctly predict the stripping cross sections at high energies for electron orbitals with low ionization potential.Comment: submitted to Phys. Rev.

    Spitzer IRAC observations of newly-discovered planetary nebulae from the Macquarie-AAO-Strasbourg H-alpha Planetary Nebula Project

    Full text link
    We compare H-alpha, radio continuum, and Spitzer Space Telescope (SST) images of 58 planetary nebulae (PNe) recently discovered by the Macquarie-AAO-Strasbo- urg H-alpha PN Project (MASH) of the SuperCOSMOS H-alpha Survey. Using InfraRed Array Camera (IRAC) data we define the IR colors of PNe and demonstrate good isolation between these colors and those of many other types of astronomical object. The only substantive contamination of PNe in the color-color plane we illustrate is due to YSOs. However, this ambiguity is readily resolved by the unique optical characteristics of PNe and their environs. We also examine the relationships between optical and MIR morphologies from 3.6 to 8.0um and explore the ratio of mid-infrared (MIR) to radio nebular fluxes, which is a valuable discriminant between thermal and nonthermal emission. MASH emphasizes late evolutionary stages of PNe compared with previous catalogs, enabling study of the changes in MIR and radio flux that attend the aging process. Spatially integrated MIR energy distributions were constructed for all MASH PNe observed by the GLIMPSE Legacy Project, using the H-alpha morphologies to establish the dimensions for the calculations of the Midcourse Space Experiment (MSX), IRAC, and radio continuum (from the Molonglo Observatory Synthesis Telescope and the Very Large Array) flux densities. The ratio of IRAC 8.0-um to MSX 8.3-um flux densities provides a measure of the absolute diffuse calibration of IRAC at 8.0 um. We independently confirm the aperture correction factor to be applied to IRAC at 8.0um to align it with the diffuse calibration of MSX. The result agrees with the recommendations of the Spitzer Science Center and with results from a parallel study of HII regions. These PNe probe the diffuse calibration of IRAC on a spatial scale of 9-77 arcsec.Comment: 48 pages, LaTeX (aastex), incl. 18 PostScript (eps) figures and 3 tables. Accepted by Astrophysical Journa
    corecore