196 research outputs found
Evolution of Robustness to Noise and Mutation in Gene Expression Dynamics
Phenotype of biological systems needs to be robust against mutation in order
to sustain themselves between generations. On the other hand, phenotype of an
individual also needs to be robust against fluctuations of both internal and
external origins that are encountered during growth and development. Is there a
relationship between these two types of robustness, one during a single
generation and the other during evolution? Could stochasticity in gene
expression have any relevance to the evolution of these robustness? Robustness
can be defined by the sharpness of the distribution of phenotype; the variance
of phenotype distribution due to genetic variation gives a measure of `genetic
robustness' while that of isogenic individuals gives a measure of
`developmental robustness'. Through simulations of a simple stochastic gene
expression network that undergoes mutation and selection, we show that in order
for the network to acquire both types of robustness, the phenotypic variance
induced by mutations must be smaller than that observed in an isogenic
population. As the latter originates from noise in gene expression, this
signifies that the genetic robustness evolves only when the noise strength in
gene expression is larger than some threshold. In such a case, the two
variances decrease throughout the evolutionary time course, indicating increase
in robustness. The results reveal how noise that cells encounter during growth
and development shapes networks' robustness to stochasticity in gene
expression, which in turn shapes networks' robustness to mutation. The
condition for evolution of robustness as well as relationship between genetic
and developmental robustness is derived through the variance of phenotypic
fluctuations, which are measurable experimentally.Comment: 25 page
The statistical neuroanatomy of frontal networks in the macaque
We were interested in gaining insight into the functional properties of frontal networks based upon their anatomical inputs. We took a neuroinformatics approach, carrying out maximum likelihood hierarchical cluster analysis on 25 frontal cortical areas based upon their anatomical connections, with 68 input areas representing exterosensory, chemosensory, motor, limbic, and other frontal inputs. The analysis revealed a set of statistically robust clusters. We used these clusters to divide the frontal areas into 5 groups, including ventral-lateral, ventral-medial, dorsal-medial, dorsal-lateral, and caudal-orbital groups. Each of these groups was defined by a unique set of inputs. This organization provides insight into the differential roles of each group of areas and suggests a gradient by which orbital and ventral-medial areas may be responsible for decision-making processes based on emotion and primary reinforcers, and lateral frontal areas are more involved in integrating affective and rational information into a common framework
A New Species of River Dolphin from Brazil or:How Little Do We Know Our Biodiversity
True river dolphins are some of the rarest and most endangered of all vertebrates. They comprise relict evolutionary lineages of high taxonomic distinctness and conservation value, but are afforded little protection. We report the discovery of a new species of a river dolphin from the Araguaia River basin of Brazil, the first such discovery in nearly 100 years. The species is diagnosable by a series of molecular and morphological characters and diverged from its Amazonian sister taxon 2.08 million years ago. The estimated time of divergence corresponds to the separation of the Araguaia-Tocantins basin from the Amazon basin. This discovery highlights the immensity of the deficit in our knowledge of Neotropical biodiversity, as well as vulnerability of biodiversity to anthropogenic actions in an increasingly threatened landscape. We anticipate that this study will provide an impetus for the taxonomic and conservation reanalysis of other taxa shared between the Araguaia and Amazon aquatic ecosystems, as well as stimulate historical biogeographical analyses of the two basins
The strike rate index: a new index for journal quality based on journal size and the h-index of citations
Quantifying the impact of scientific research is almost always controversial, and there is a need for a uniform method that can be applied across all fields. Increasingly, however, the quantification has been summed up in the impact factor of the journal in which the work is published, which is known to show differences between fields. Here the h-index, a way to summarize an individual's highly cited work, was calculated for journals over a twenty year time span and compared to the size of the journal in four fields, Agriculture, Condensed Matter Physics, Genetics and Heredity and Mathematical Physics. There is a linear log-log relationship between the h-index and the size of the journal: the larger the journal, the more likely it is to have a high h-index. The four fields cannot be separated from each other suggesting that this relationship applies to all fields. A strike rate index (SRI) based on the log relationship of the h-index and the size of the journal shows a similar distribution in the four fields, with similar thresholds for quality, allowing journals across diverse fields to be compared to each other. The SRI explains more than four times the variation in citation counts compared to the impact factor
Maximum Parsimony on Phylogenetic networks
Abstract Background Phylogenetic networks are generalizations of phylogenetic trees, that are used to model evolutionary events in various contexts. Several different methods and criteria have been introduced for reconstructing phylogenetic trees. Maximum Parsimony is a character-based approach that infers a phylogenetic tree by minimizing the total number of evolutionary steps required to explain a given set of data assigned on the leaves. Exact solutions for optimizing parsimony scores on phylogenetic trees have been introduced in the past. Results In this paper, we define the parsimony score on networks as the sum of the substitution costs along all the edges of the network; and show that certain well-known algorithms that calculate the optimum parsimony score on trees, such as Sankoff and Fitch algorithms extend naturally for networks, barring conflicting assignments at the reticulate vertices. We provide heuristics for finding the optimum parsimony scores on networks. Our algorithms can be applied for any cost matrix that may contain unequal substitution costs of transforming between different characters along different edges of the network. We analyzed this for experimental data on 10 leaves or fewer with at most 2 reticulations and found that for almost all networks, the bounds returned by the heuristics matched with the exhaustively determined optimum parsimony scores. Conclusion The parsimony score we define here does not directly reflect the cost of the best tree in the network that displays the evolution of the character. However, when searching for the most parsimonious network that describes a collection of characters, it becomes necessary to add additional cost considerations to prefer simpler structures, such as trees over networks. The parsimony score on a network that we describe here takes into account the substitution costs along the additional edges incident on each reticulate vertex, in addition to the substitution costs along the other edges which are common to all the branching patterns introduced by the reticulate vertices. Thus the score contains an in-built cost for the number of reticulate vertices in the network, and would provide a criterion that is comparable among all networks. Although the problem of finding the parsimony score on the network is believed to be computationally hard to solve, heuristics such as the ones described here would be beneficial in our efforts to find a most parsimonious network.</p
A polynomial time algorithm for calculating the probability of a ranked gene tree given a species tree
- …
