1,387 research outputs found

    Elastic Cross-Section and Luminosity Measurement in ATLAS at LHC

    Full text link
    Recently the ATLAS experiment was complemented with a set of ultra-small-angle detectors located in ``Roman Pot'' inserts at 240m on either side of the interaction point, aiming at the absolute determination of the LHC luminosity by measuring the elastic scattering rate at the Coulomb Nuclear Interference region. Details of the proposed measurement the detector construction and the expected performance as well as the challenges involved are discussed here.Comment: EDS05, Blois, France, May 15-20, 200

    Secondary resonances and the boundary of effective stability of Trojan motions

    Full text link
    One of the most interesting features in the libration domain of co-orbital motions is the existence of secondary resonances. For some combinations of physical parameters, these resonances occupy a large fraction of the domain of stability and rule the dynamics within the stable tadpole region. In this work, we present an application of a recently introduced `basic Hamiltonian model' Hb for Trojan dynamics, in Paez and Efthymiopoulos (2015), Paez, Locatelli and Efthymiopoulos (2016): we show that the inner border of the secondary resonance of lowermost order, as defined by Hb, provides a good estimation of the region in phase-space for which the orbits remain regular regardless the orbital parameters of the system. The computation of this boundary is straightforward by combining a resonant normal form calculation in conjunction with an `asymmetric expansion' of the Hamiltonian around the libration points, which speeds up convergence. Applications to the determination of the effective stability domain for exoplanetary Trojans (planet-sized objects or asteroids) which may accompany giant exoplanets are discussed.Comment: 21 pages, 9 figures. Accepted for publication in Celestial Mechanics and Dynamical Astronom

    Bohmian trajectories in an entangled two-qubit system

    Full text link
    In this paper we examine the evolution of Bohmian trajectories in the presence of quantum entanglement. We study a simple two-qubit system composed of two coherent states and investigate the impact of quantum entanglement on chaotic and ordered trajectories via both numerical and analytical calculations.Comment: 12 Figures, corrected typos, replaced figure 10 and revised captions in figures 8 and 1

    The theory of secondary resonances in the spin-orbit problem

    Full text link
    We study the resonant dynamics in a simple one degree of freedom, time dependent Hamiltonian model describing spin-orbit interactions. The equations of motion admit periodic solutions associated with resonant motions, the most important being the synchronous one in which most evolved satellites of the Solar system, including the Moon, are observed. Such primary resonances can be surrounded by a chain of smaller islands which one refers to as secondary resonances. Here, we propose a novel canonical normalization procedure allowing to obtain a higher order normal form, by which we obtain analytical results on the stability of the primary resonances as well as on the bifurcation thresholds of the secondary resonances. The procedure makes use of the expansion in a parameter, called the detuning, measuring the shift from the exact secondary resonance. Also, we implement the so-called `book-keeping' method, i.e., the introduction of a suitable separation of the terms in orders of smallness in the normal form construction, which deals simultaneously with all the small parameters of the problem. Our analytical computation of the bifurcation curves is in excellent agreement with the results obtained by a numerical integration of the equations of motion, thus providing relevant information on the parameter regions where satellites can be found in a stable configuration.Comment: Accepted for publication in MNRA

    Hamiltonian formulation of the spin-orbit model with time-varying non-conservative forces

    Full text link
    In a realistic scenario, the evolution of the rotational dynamics of a celestial or artificial body is subject to dissipative effects. Time-varying non-conservative forces can be due to, for example, a variation of the moments of inertia or to tidal interactions. In this work, we consider a simplified model describing the rotational dynamics, known as the spin-orbit problem, where we assume that the orbital motion is provided by a fixed Keplerian ellipse. We consider different examples in which a non-conservative force acts on the model and we propose an analytical method, which reduces the system to a Hamiltonian framework. In particular, we compute a time parametrisation in a series form, which allows us to transform the original system into a Hamiltonian one. We also provide applications of our method to study the rotational motion of a body with time-varying moments of inertia, e.g. an artificial satellite with flexible components, as well as subject to a tidal torque depending linearly on the velocity.Comment: Accepted for publication in Communications in Nonlinear Science and Numerical Simulatio

    Accurate modelling of the low-order secondary resonances in the spin-orbit problem

    Full text link
    We provide an analytical approximation to the dynamics in each of the three most important low order secondary resonances (1:1, 2:1, and 3:1) bifurcating from the synchronous primary resonance in the gravitational spin-orbit problem. To this end we extend the perturbative approach introduced in Gkolias et. al. (2016), based on normal form series computations. This allows to recover analytically all non-trivial features of the phase space topology and bifurcations associated with these resonances. Applications include the characterization of spin states of irregular planetary satellites or double systems of minor bodies with irregular shapes. The key ingredients of our method are: i) the use of a detuning parameter measuring the distance from the exact resonance, and ii) an efficient scheme to `book-keep' the series terms, which allows to simultaneously treat all small parameters entering the problem. Explicit formulas are provided for each secondary resonance, yielding i) the time evolution of the spin state, ii) the form of phase portraits, iii) initial conditions and stability for periodic solutions, and iv) bifurcation diagrams associated with the periodic orbits. We give also error estimates of the method, based on analyzing the asymptotic behavior of the remainder of the normal form series.Comment: Accepted for publication in Communications in Nonlinear Science and Numerical Simulatio

    The speed of Arnold diffusion

    Full text link
    A detailed numerical study is presented of the slow diffusion (Arnold diffusion) taking place around resonance crossings in nearly integrable Hamiltonian systems of three degrees of freedom in the so-called `Nekhoroshev regime'. The aim is to construct estimates regarding the speed of diffusion based on the numerical values of a truncated form of the so-called remainder of a normalized Hamiltonian function, and to compare them with the outcomes of direct numerical experiments using ensembles of orbits. In this comparison we examine, one by one, the main steps of the so-called analytic and geometric parts of the Nekhoroshev theorem. We are led to two main results: i) We construct in our concrete example a convenient set of variables, proposed first by Benettin and Gallavotti (1986), in which the phenomenon of Arnold diffusion in doubly resonant domains can be clearly visualized. ii) We determine, by numerical fitting of our data the dependence of the local diffusion coefficient "D" on the size "||R_{opt}||" of the optimal remainder function, and we compare this with a heuristic argument based on the assumption of normal diffusion. We find a power law "D\propto ||R_{opt}||^{2(1+b)}", where the constant "b" has a small positive value depending also on the multiplicity of the resonance considered.Comment: 39 pages, 11 figure

    Geostationary secular dynamics revisited: application to high area-to-mass ratio objects

    Full text link
    The long-term dynamics of the geostationary Earth orbits (GEO) is revisited through the application of canonical perturbation theory. We consider a Hamiltonian model accounting for all major perturbations: geopotential at order and degree two, lunisolar perturbations with a realistic model for the Sun and Moon orbits, and solar radiation pressure. The long-term dynamics of the GEO region has been studied both numerically and analytically, in view of the relevance of such studies to the issue of space debris or to the disposal of GEO satellites. Past studies focused on the orbital evolution of objects around a nominal solution, hereafter called the forced equilibrium solution, which shows a particularly strong dependence on the area-to-mass ratio. Here, we i) give theoretical estimates for the long-term behavior of such orbits, and ii) we examine the nature of the forced equilibrium itself. In the lowest approximation, the forced equilibrium implies motion with a constant non-zero average `forced eccentricity', as well as a constant non-zero average inclination, otherwise known in satellite dynamics as the inclination of the invariant `Laplace plane'. Using a higher order normal form, we demonstrate that this equilibrium actually represents not a point in phase space, but a trajectory taking place on a lower-dimensional torus. We give analytical expressions for this special trajectory, and we compare our results to those found by numerical orbit propagation. We finally discuss the use of proper elements, i.e., approximate integrals of motion for the GEO orbits.Comment: Accepted for publication in CMD
    corecore