1,267 research outputs found
A reexamination and extension of international strategy-structure theory
Using a sample of 95 German firms, the study finds general support for the traditional fits of international strategy-structure theory. Employing an information-processing perspective, the study conceptually and empirically extends existing theory (1) to address strategy-structure fit for various types of matrix structure, and (2) by adding two new elements of international strategy to the existing international strategy-structure model: the level of international transfers and level of foreign R&D
Surfactant-like Effect and Dissolution of Ultrathin Fe Films on Ag(001)
The phase immiscibility and the excellent matching between Ag(001) and
Fe(001) unit cells (mismatch 0.8 %) make Fe/Ag growth attractive in the field
of low dimensionality magnetic systems. Intermixing could be drastically
limited at deposition temperatures as low as 140-150 K. The film structural
evolution induced by post-growth annealing presents many interesting aspects
involving activated atomic exchange processes and affecting magnetic
properties. Previous experiments, of He and low energy ion scattering on films
deposited at 150 K, indicated the formation of a segregated Ag layer upon
annealing at 550 K. Higher temperatures led to the embedding of Fe into the Ag
matrix. In those experiments, information on sub-surface layers was attained by
techniques mainly sensitive to the topmost layer. Here, systematic PED
measurements, providing chemical selectivity and structural information for a
depth of several layers, have been accompanied with a few XRD rod scans,
yielding a better sensitivity to the buried interface and to the film long
range order. The results of this paper allow a comparison with recent models
enlightening the dissolution paths of an ultra thin metal film into a different
metal, when both subsurface migration of the deposit and phase separation
between substrate and deposit are favoured. The occurrence of a surfactant-like
stage, in which a single layer of Ag covers the Fe film is demonstrated for
films of 4-6 ML heated at 500-550 K. Evidence of a stage characterized by the
formation of two Ag capping layers is also reported. As the annealing
temperature was increased beyond 700 K, the surface layers closely resembled
the structure of bare Ag(001) with the residual presence of subsurface Fe
aggregates.Comment: 4 pages, 3 figure
Review of noise sources in magnetic tunnel junction sensors
Invited Oral Presentation: M-13This journal issue contain selected papers from the Asia-Pacific Data Storage Conference 2010Noise problem limits the sensitivity of magnetic tunnel junction (MTJ) sensors for ultra-low magnetic field applications. Noise analysis not only helps in finding ways to eliminate noise disturbances but also essential for understanding the electronic and magnetic properties of MTJs. These approaches provide insight for optimizing the design of MTJ sensors before fabrication. This paper reviews the noise sources in MTJ sensors reported in recent years. Both the origins and mathematical derivations of the noise sources are presented, illustrating how different factors affecting the performance of MTJ sensors. A brief outlook of challenges in the future is also given. © 2011 IEEE.published_or_final_versio
A magnetically shielded instrument for magnetoresistance and noise characterizations of magnetic tunnel junction sensors
A magnetically shielded setup was developed for characterizing magnetoresistance (MR) and noise properties of magnetic tunneling junction (MTJ) sensors. A mu-metal shielding is installed to avoid the interference of external magnetic disturbance. Both MR curves and noise power spectra of MTJ sensors can be obtained for further data analysis. Moreover, a hard-axis magnetic field can be applied to eliminate the hysteresis and the linear field response of MTJ sensors can be measured. The preliminary measurement results on MTJ sensors are presented to illustrate the characterization capabilities of this setup. © 2010 IEEE.published_or_final_versionThe 2010 IEEE International Conference of Electronic Devices and Solid-State Circuits (EDSSC), Hong Kong, 15-17 December 2010. In Proceedings of EDSSC, 2010, p. 1-
Magnetic tunnel junction sensors with conetic alloy
Poster Session - F. Storage Applications and Others: PF-12This journal issue contain selected papers of APDSC'10Al 2O 3 magnetic tunneling junction (MTJ) sensors were fabricated with Conetic alloy Ni 77Fe 14Cu 5Mo 4 deposited as the free layer and pinned layer for its soft magnetic properties. It was observed that the Al 2O 3 MTJ sensors with Conetic exhibited relatively small easy-axis coercivity. Tunneling magnetoresistance (TMR) and noise measurements were carried out to characterize the sensors. TMR of 9.5% and Hooge parameter of 3.825 × 10 -7μm 2 were achieved without any hard-axis field. Hard-axis bias field was applied to eliminate the hysteresis and improve the linear field response of the MTJ sensor. The hysteresis was removed by applying an external magnetic field along the hard axis at 8 Oe and the sensor sensitivity was 0.4 %/Oe within a linear region at room temperature. The relationship between the Hooge parameter and hard-axis field was also investigated and the result demonstrated that the 1/f noise can be suppressed by an optimized hard-axis bias field. This work shows that it is feasible to use Conetic alloy as the soft magnetic layers in MTJ sensors for its small coercivity, and a hard-axis bias field can be used to linearize the sensor response and suppress the 1/f noise. © 2011 IEEE.published_or_final_versionThe Asia-Pacific Data Storage Conference (APDSC'10), Hualien, Taiwan, 27-29 October 2010. In IEEE Transactions on Magnetics, 2011, v. 47 n. 3, p. 714-71
Surface Core-Level Shifts at an oxygen-rich Ru Surface: O/Ru(0001) vs. RuO_2(110)
We present density-functional theory calculations of Ru 3d and O 1s surface
core-level shifts (SCLSs) at an oxygen-rich Ru(0001) surface, namely for the
O(1x1)/Ru(0001) chemisorption phase and for two surface terminations of fully
oxidized RuO_2(110). Including final-state effects, the computed SCLSs can be
employed for the analysis of experimental X-ray photoelectron spectroscopy
(XPS) data enabling a detailed study of the oxidation behaviour of the Ru(0001)
surface. We show that certain peaks can be used as a fingerprint for the
existence of the various phases and propose that the long disputed satellite
peak in RuO_2(110) XPS data originates from a hitherto unaccounted surface
termination.Comment: 7 pages including 3 figures. Surf. Sci. in press. Related
publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
Magnetic tunnel junction magnetic field sensor design tool
A spreadsheet-based magnetic tunnel junction (MTJ) sensor design tool is presented in this paper. The system is developed using Excel and Visual Basic Application. It allows users to optimize the various parameters of the sensor design with the goal of SQUID-like sensitivity. Users can input parameters of the design including magnetic properties, junction areas, and free layers thicknesses. The design tool will then calculate and display automatically various noise sources including Johnson noise, shot noise, 1/f noise, and thermal magnetic noise that must be considered when building MTJ magnetic field sensors. Graphs predicting the sensitivities, operating current and power of the finished sensors are shown and fine tuning of each design parameter is allowed using the scrollbars provided. Using this design tool, effects of changes made to any design parameter can be clearly observed and detailed noise analysis can be studied without manually repeating complex calculations. ©2010 IEEE.published_or_final_versionThe 3rd International Nanoelectronics Conference (INEC 2010), Hong Kong, China, 3-8 January 2010. In Proceedings of the 3rd INEC, 2010, p. 1149-115
- …
