3,615 research outputs found
“Thou art translated”: Remapping Hideki Noda and Satoshi Miyagi’s A Midsummer Night’s Dream in Post-March 11 Japan
As an example of this, I read A Midsummer Night’s Dream as adapted by Hideki Noda originally in 1992 and then directed by Miyagi Satoshi for the Shizuoka Performing Arts Centre in 2011. Drawing on my experience as the surtitle translator of Noda’s Japanese adaptation “back” into English, I discuss the linguistic and cultural metamorphosis of Noda’s reworking and the effects of its mediation in Miyagi’s rendition, and ask to what extent the production, adapted in post-March 2011 Japan, can be read as a “contact zone” for a translingual Japanese Shakespeare. In what way did Miyagi’s reading of the post-March 11 events inflect Noda’s adaption along socio-political lines? What is lost and gained in processes of adaptation in the wake of an environmental catastrophe
Projections for future radiocarbon content in dissolved inorganic carbon in hardwater lakes: a retrospective approach
Inland water bodies contain significant amounts of carbon in the form of dissolved inorganic carbon (DIC) derived from a mixture of modern atmospheric and pre-aged sources, which needs to be considered in radiocarbon-based dating and natural isotope tracer studies. While reservoir effects in hardwater lakes are generally considered to be constant through time, a comparison of recent and historical DI14C data from 2013 and 1969 for Lake Constance reveals that this is not a valid assumption. We hypothesize that changes in atmospheric carbon contributions to lake water DIC have taken place due to anthropogenically forced eutrophication in the 20th century. A return to more oligotrophic conditions in the lake led to reoxygenation and enhanced terrigenous organic matter remineralization, contributing to lake water DIC. Such comparisons using DI14C measurements from different points in time enable nonlinear changes in lake water DIC source and signature to be disentangled from concurrent anthropogenically induced changes in atmospheric 14C. In the future, coeval changes in lake dynamics due to climate change are expected to further perturb these balances. Depending on the scenario, Lake Constance DI14C is projected to decrease from the 2013 measured value of 0.856 Fm to 0.54–0.62 Fm by the end of the century
Adapting to Post-March 2011 Japan: Hideki Noda and Satoshi Miyagi’s A Midsummer Night’s Dream
The exposure history of the Apollo 16 site: An assessment based on methane and hydrolysable carbon
Nineteen soils from eight stations at the Apollo 16 landing site have been analyzed for methane and hydrolysable carbon. These results, in conjunction with published data from photogeology, bulk chemistry, rare gases, primordial and cosmogenic radionuclides, and agglutinate abundances have been interpreted in terms of differing contributions from three components-North and South Ray Crater ejecta and Cayley Plains material
Hydrologic controls on seasonal and inter-annual variability of Congo River particulate organic matter source and reservoir age
We present dissolved organic carbon (DOC) concentrations, particulate organic matter (POM) composition (δ13C, δ15N, ∆14C, N/C), and particulate glycerol dialkyl glycerol tetraether (GDGT) distributions from a 34-month time-series near the mouth of the Congo River. An end-member mixing model using δ13C and N/C indicates that exported POM is consistently dominated by C3 rainforest soil sources, with increasing contribution from C3 vegetation and decreasing contribution from phytoplankton at high discharge. Large C4 inputs are never observed despite covering ≈ 13% of the catchment. Low and variable ∆14C values during 2011 [annual mean = (− 148 ± 82) ‰], when discharge from left-bank tributaries located in the southern hemisphere reached record lows, likely reflect a bias toward pre-aged POM derived from the Cuvette Congolaise swamp forest. In contrast, ∆14C values were stable near − 50‰ between January and June 2013, when left-bank discharge was highest. We suggest that headwater POM is replaced and/or diluted by C3 vegetation and pre-aged soils during transit through the Cuvette Congolaise, whereas left-bank tributaries export significantly less pre-aged material. GDGT distributions provide further evidence for seasonal and inter-annual variability in soil provenance. The cyclization of branched tetraethers and the GDGT-0 to crenarchaeol ratio are positively correlated with discharge (r ≥ 0.70; p-value ≤ 4.3 × 10− 5) due to the incorporation of swamp-forest soils when discharge from right-bank tributaries located in the northern hemisphere is high. Both metrics reach record lows during 2013, supporting our interpretation of increased left-bank contribution at this time. We conclude that hydrologic variability is a major control of POM provenance in the Congo River Basin and that tropical wetlands can be a significant POM source despite their small geographic coverage
Аналіз чинників впливу на процеси функціонування керівної системи підприємств
Мета статті зводиться до вирішення завдання аналізу чинників впливу на керівну систему як регулятор діяльності підприємства та за допомогою використання метода теоретичного аналізу, синтезу та узагальнення розробки їх загальної класифікації.Цель статьи сводится к решению задания анализа факторов влияния на руководящую систему как регулятор деятельности предприятия и с помощью использования метода теоретического анализа, синтеза и обобщения разработки их общей классификации
Widespread dispersal and aging of organic carbon in shallow marginal seas
The occurrence of pre-aged organic carbon (OC) in continental margin surface sediments is a commonly observed phenomenon, yet the nature, sources, and causes of this aged OC remain largely undetermined for many continental shelf settings. Here we present the results of an extensive survey of the abundance and radiocarbon content of OC in surface sediments from the northern Chinese marginal seas. Pre-aged OC is associated with both coarser (>63 µm) and finer (<63 µm) sedimentary components; measurements on specific grain-size fractions reveal that it is especially prevalent within the 20–63 µm fraction of inner shelf sediments. We suggest that organic matter associated with this sortable silt fraction is subject to protracted entrainment in resuspension-deposition loops during which it ages, is modified, and is laterally dispersed, most likely via entrainment within benthic nepheloid layers. This finding highlights the complex dynamics and predepositional history of organic matter accumulating in continental shelf sediments, with implications for our understanding of carbon cycling on continental shelves, development of regional carbon budgets, and interpretation of sedimentary records
Relevance of carbon stocks of marine sediments for national greenhouse gas inventories of maritime nations
© The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Carbon Balance and Management 12 (2017): 10, doi:10.1186/s13021-017-0077-x.Determining national carbon stocks is essential in the framework of ongoing climate change mitigation actions. Presently, assessment of carbon stocks in the context of greenhouse gas (GHG)-reporting on a nation-by-nation basis focuses on the terrestrial realm, i.e., carbon held in living plant biomass and soils, and on potential changes in these stocks in response to anthropogenic activities. However, while the ocean and underlying sediments store substantial quantities of carbon, this pool is presently not considered in the context of national inventories. The ongoing disturbances to both terrestrial and marine ecosystems as a consequence of food production, pollution, climate change and other factors, as well as alteration of linkages and C-exchange between continental and oceanic realms, highlight the need for a better understanding of the quantity and vulnerability of carbon stocks in both systems. We present a preliminary comparison of the stocks of organic carbon held in continental margin sediments within the Exclusive Economic Zone of maritime nations with those in their soils. Our study focuses on Namibia, where there is a wealth of marine sediment data, and draws comparisons with sediment data from two other countries with different characteristics, which are Pakistan and the United Kingdom. Results indicate that marine sediment carbon stocks in maritime nations can be similar in magnitude to those of soils. Therefore, if human activities in these areas are managed, carbon stocks in the oceanic realm—particularly over continental margins—could be considered as part of national GHG inventories. This study shows that marine sediment organic carbon stocks can be equal in size or exceed terrestrial carbon stocks of maritime nations. This provides motivation both for improved assessment of sedimentary carbon inventories and for reevaluation of the way that carbon stocks are assessed and valued. The latter carries potential implications for the management of human activities on coastal environments and for their GHG inventories.We acknowledge research support from ETH Zurich and the Swiss National Science Foundation
- …
