648 research outputs found

    Use of meat juice and blood serum with a miniaturised protein microarray assay to develop a multi-parameter IgG screening test with high sample throughput potential for slaughtering pigs

    Get PDF
    Background Serological screening of pig herds at the abattoir is considered a potential tool to improve meat inspection procedures and herd health management. Therefore, we previously reported the feasibility of a miniaturised protein microarray as a new serological IgG screening test for zoonotic agents and production diseases in pigs. The present study investigates whether the protein microarray-based assay is applicable for high sample throughput using either blood serum or meat juice. Material and methods Microarrays with 12 different antigens were produced by Abbott (formerly Alere Technologies GmbH) Jena, Germany in a previously offered ‘ArrayTube’ platform and in an ‘ArrayStrip’ platform for large-scale use. A test protocol for the use of meat juice on both microarray platforms was developed. Agreement between serum and meat juice was analysed with 88 paired samples from three German abattoirs. Serum was diluted 1:50 and meat juice 1:2. ELISA results for all tested antigens from a preceding study were used as reference test to perform Receiver Operating Characteristic analysis for both test specimens on both microarray platforms. Results High area under curve values (AUC > 0.7) were calculated for the analysis of T. gondii (0.87), Y. enterocolitica (0.97), Mycoplasma hyopneumoniae (0.84) and Actinobacillus pleuropneumoniae (0.71) with serum as the test specimen and for T. gondii (0.99), Y. enterocolitica (0.94), PRRSV (0.88), A. pleuropneumoniae (0.78) and Salmonella spp. (0.72) with meat juice as the test specimen on the ArrayStrip platform. Cohens kappa values of 0.92 for T. gondii and 0.82 for Y. enterocolitica were obtained for the comparison between serum and meat juice. When applying the new method in two further laboratories, kappa values between 0.63 and 0.94 were achieved between the laboratories for these two pathogens. Conclusion Further development of a miniaturised pig-specific IgG protein microarray assay showed that meat juice can be used on microarray platforms. Two out of twelve tested antigens (T. gondii, Y. enterocolitica) showed high test accuracy on the ArrayTube and the ArrayStrip platform with both sample materials

    Characterization of Methicillin-Resistant Staphylococcus aureus Isolated from Healthy Turkeys and Broilers Using DNA Microarrays

    Get PDF
    Methicillin-resistant Staphylococcus aureus (MRSA) is a major human health problem and recently, domestic animals are described as carriers and possible reservoirs. Twenty seven S. aureus isolates from five turkey farms (n = 18) and two broiler farms (n = 9) were obtained by culturing of choana and skin swabs from apparently healthy birds, identified by Taqman-based real-time duplex nuc-mecA-PCR and characterized by spa typing as well as by a DNA microarray based assay which covered, amongst others, a considerable number of antibiotic resistance genes, species controls, and virulence markers. The antimicrobial susceptibility profiles were tested by agar diffusion assays and genotypically confirmed by the microarray. Five different spa types (3 in turkeys and 2 in broilers) were detected. The majority of MRSA isolates (24/27) belonged to clonal complex 398-MRSA-V. The most frequently occurring spa types were accordingly t011, t034, and t899. A single CC5-MRSA-III isolated from turkey and CC398-MRSA with an unidentified/truncated SCCmec element in turkey and broiler were additionally detected. The phenotypic antimicrobial resistance profiles of S. aureus isolated from both turkeys and broilers against 14 different antimicrobials showed that all isolates were resistant to ampicillin, cefoxitin, oxacillin, doxycycline, and tetracycline. Moreover, all S. aureus isolated from broilers were resistant to erythromycin and azithromycin. All isolates were susceptible to gentamicin, chloramphenicol, sulphonamides, and fusidic acid. The resistance rate against ciprofloxacin was 55.6% in broiler isolates and 42.1% in turkey isolates. All tetracycline resistant isolates possessed genes tetK/M. All erythromycin- resistant broiler isolates carried ermA. Only one broiler isolate (11.1%) carried genes ermA, ermB, and ermC, while 55.6% of turkey isolates possessed ermA and ermB genes. Neither PVL genes (lukF/S-PV), animal-associated leukocidin (lukM and luk-P83) nor the gene encoding the toxic shock syndrome toxin (tst1) were found in turkey and broiler isolates. In conclusion, the detection of MRSA in healthy turkeys and broilers with even additional antibiotic resistance markers is of major public health concern. The difference in antibiotic resistance and virulence markers between MRSA isolates from turkeys and broilers was addressed

    Characterization of Antibiotic and Biocide Resistance Genes and Virulence Factors of Staphylococcus Species Associated with Bovine Mastitis in Rwanda

    Get PDF
    The present study was conducted from July to August 2018 on milk samples taken at dairy farms in the Northern Province and Kigali District of Rwanda in order to identify Staphylococcus spp. associated with bovine intramammary infection. A total of 161 staphylococcal isolates originating from quarter milk samples of 112 crossbred dairy cattle were included in the study. Antimicrobial susceptibility testing was performed and isolates were examined for the presence of various resistance genes. Staphylococcus aureus isolates were also analyzed for the presence of virulence factors, genotyped by spa typing and further phenotypically subtyped for capsule expression using Fourier Transform Infrared (FTIR) spectroscopy. Selected S. aureus were characterized using DNA microarray technology, multi-locus sequence typing (MLST) and whole-genome sequencing. All mecA-positive staphylococci were further genotyped using dru typing. In total, 14 different staphylococcal species were detected, with S. aureus being most prevalent (26.7%), followed by S. xylosus (22.4%) and S. haemolyticus (14.9%). A high number of isolates was resistant to penicillin and tetracycline. Various antimicrobial and biocide resistance genes were detected. Among S. aureus, the Panton–Valentine leukocidin (PVL) genes, as well as bovine leukocidin (LukM/LukF-P83) genes, were detected in two and three isolates, respectively, of which two also carried the toxic shock syndrome toxin gene tsst-1 bovine variant. t1236 was the predominant spa type. FTIR-based capsule serotyping revealed a high prevalence of non-encapsulated S. aureus isolates (89.5%). The majority of the selected S. aureus isolates belonged to clonal complex (CC) 97 which was determined using DNA microarray based assignment. Three new MLST sequence types were detected

    Surveillance of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in Dairy Cattle Farms in the Nile Delta, Egypt

    Get PDF
    Introduction: Industrial livestock farming is a possible source of multi-resistant Gram-negative bacteria, including producers of extended spectrum beta-lactamases (ESBLs) conferring resistance to 3rd generation cephalosporins. Limited information is currently available on the situation of ESBL producers in livestock farming outside of Western Europe. A surveillance study was conducted from January to May in 2014 in four dairy cattle farms in different areas of the Nile delta, Egypt. Materials and Methods: In total, 266 samples were collected from 4 dairy farms including rectal swabs from clinically healthy cattle (n = 210), and environmental samples from the stalls (n = 56). After 24 h pre-enrichment in buffered peptone water, all samples were screened for 3rd generation cephalosporin-resistant Escherichia coli using Brilliance™ ESBL agar. Suspected colonies of putatively ESBL-producing E. coli were sub-cultured and subsequently genotypically and phenotypically characterized. Susceptibility testing using the VITEK-2 system was performed. All suspect isolates were genotypically analyzed using two DNA-microarray based assays: CarbDetect AS-1 and E. coli PanType AS-2 kit (ALERE). These tests allow detection of a multitude of genes and their alleles associated with resistance toward carbapenems, cephalosporins, and other frequently used antibiotics. Serotypes were determined using the E. coli SeroGenotyping AS-1 kit (ALERE). Results: Out of 266 samples tested, 114 (42.8%) ESBL-producing E. coli were geno- and phenotypically identified. 113 of 114 phenotypically 3rd generation cephalosporin-resistant isolates harbored at least one of the ESBL resistance genes covered by the applied assays [blaCTX-M15 (n = 105), blaCTX-M9 (n = 1), blaTEM (n = 90), blaSHV (n = 1)]. Alarmingly, the carbapenemase genes blaOXA-48 (n = 5) and blaOXA-181 (n = 1) were found in isolates that also were phenotypically resistant to imipenem and meropenem. Using the array-based serogenotyping method, 66 of the 118 isolates (55%) could be genotypically assigned to O-types. Conclusion: This study is considered to be a first report of the high prevalence of ESBL-producing E. coli in dairy farms in Egypt. ESBL-producing E. coli isolates with different underlying resistance mechanisms are common in investigated dairy cattle farms in Egypt. The global rise of ESBL- and carbapenemase-producing Gram-negative bacteria is a big concern, and demands intensified surveillance

    Molecular characteristics of bap-positive Staphylococcus aureus strains from dairy cow mastitis

    Get PDF
    The biofilm-associated protein (Bap) of Staphylococcus aureus is a high molecular weight cell-wallanchored protein involved in biofilm formation, first described in bovine mastitis strains from Spain. So far, studies regarding Bap were mainly based on the Spanish strain V329 and its mutants, but no information on the genetic variability of bap-positive Staph. aureus strains is yet available in the literature. The present study investigated the molecular characteristics of 8 bap-positive Staph. aureus strains from subclinical bovine mastitis, isolated in 5 herds; somatic cell counts (SCC) of milk samples were also registered. Strains were characterised using MLST, SPA typing and microarray and the results were compared with V329. All isolates from this study and V329 were assigned to ST126, t605, but some molecular differences were observed. Only herd A and B strains harboured the genes for β-lactams resistance; the leukocidin D/E gene, a type I site-specific deoxyribonuclease subunit, 3rd locus gene and serin-protease A and B were carried by all strains, but not by V329, while serin-protease E was absent in V329 and in another isolate. Four isolates and V329 harboured the fibronectin-binding protein B gene. SCC showed the highest value in the milk sample affected by the only strain carrying all the virulence factors considered. Potential large variability of virulence was evidenced among V329 and all bap-positive Staph. aureus strains considered: the carriage of fnb could enhance the accumulation of biofilm, but the lack of lukD/E and splA, B or E might decrease the invasiveness of strain

    What the Phage: a scalable workflow for the identification and analysis of phage sequences

    Get PDF
    Phages are among the most abundant and diverse biological entities on earth. Phage prediction from sequence data is a crucial first step to understanding their impact on the environment. A variety of bacteriophage prediction tools have been developed over the years. They differ in algorithmic approach, results, and ease of use. We, therefore, developed "What the Phage"(WtP), an easy-to-use and parallel multitool approach for phage prediction combined with an annotation and classification downstream strategy, thus supporting the user's decision-making process by summarizing the results of the different prediction tools in charts and tables. WtP is reproducible and scales to thousands of datasets through a workflow manager (Nextflow). WtP is freely available under a GPL-3.0 license (https://github.com/replikation/What_the_Phage)

    Imaging Diffractometric Biosensors for Label-Free, Multi-Molecular Interaction Analysis

    Get PDF
    Biosensors are used for the specific and sensitive detection of biomolecules. In conventional approaches, the suspected target molecules are bound to selected capture molecules and successful binding is indicated by additional labelling to enable optical readout. This labelling requires additional processing steps tailored to the application. While numerous label-free interaction assays exist, they often compromise on detection characteristics. In this context, we introduce a novel diffractometric biosensor, comprising a diffractive biosensor chip and an associated optical reader assembly. This innovative system can capture an entire assay, detecting various types of molecules in a label-free manner and present the results within in a single, comprehensive image. The applicability of the biosensor is assessed for the detection of viral DNA as well as proteins directly in human plasma, investigating different antigens. In our experiments, we achieve a detection limit of 4.2 pg/mm², which is comparable to other label-free optical biosensors. The simplicity and robustness of the method make it a compelling option for advancing biosensing technologies. This work contributes to the development of an imaging diffractometric biosensor with the potential for multiple applications in molecular interaction analysis
    corecore