5,091 research outputs found

    The challenges of purely mechanistic models in biology and the minimum need for a 'mechanism-plus-X' framework

    Get PDF
    Ever since the advent of molecular biology in the 1970s, mechanical models have become the dogma in the field, where a "true" understanding of any subject is equated to a mechanistic description. This has been to the detriment of the biomedical sciences, where, barring some exceptions, notable new feats of understanding have arguably not been achieved in normal and disease biology, including neurodegenerative disease and cancer pathobiology. I argue for a "mechanism-plus-X" paradigm, where mainstay elements of mechanistic models such as hierarchy and correlation are combined with nomological principles such as general operative rules and generative principles. Depending on the question at hand and the nature of the inquiry, X could range from proven physical laws to speculative biological generalizations, such as the notional principle of cellular synchrony. I argue that the "mechanism-plus-X" approach should ultimately aim to move biological inquiries out of the deadlock of oft-encountered mechanistic pitfalls and reposition biology to its former capacity of illuminating fundamental truths about the world

    The Merits of Sharing a Ride

    Full text link
    The culture of sharing instead of ownership is sharply increasing in individuals behaviors. Particularly in transportation, concepts of sharing a ride in either carpooling or ridesharing have been recently adopted. An efficient optimization approach to match passengers in real-time is the core of any ridesharing system. In this paper, we model ridesharing as an online matching problem on general graphs such that passengers do not drive private cars and use shared taxis. We propose an optimization algorithm to solve it. The outlined algorithm calculates the optimal waiting time when a passenger arrives. This leads to a matching with minimal overall overheads while maximizing the number of partnerships. To evaluate the behavior of our algorithm, we used NYC taxi real-life data set. Results represent a substantial reduction in overall overheads
    corecore