2,240 research outputs found

    Grid generation on surfaces in 3 dimensions

    Get PDF
    The development of a surface grid generation algorithm was initiated. The basic adaptive movement technique of mean-value-relaxation was extended from the viewpoint of a single coordinate grid over a surface described by a single scalar function to that of a surface more generally defined by vector functions and covered by a collection of smoothly connected grids. Within the multiconnected assemblage, the application of control was examined in several instances

    GridMan: A grid manipulation system

    Get PDF
    GridMan is an interactive grid manipulation system. It operates on grids to produce new grids which conform to user demands. The input grids are not constrained to come from any particular source. They may be generated by algebraic methods, elliptic methods, hyperbolic methods, parabolic methods, or some combination of methods. The methods are included in the various available structured grid generation codes. These codes perform the basic assembly function for the various elements of the initial grid. For block structured grids, the assembly can be quite complex due to a large number of clock corners, edges, and faces for which various connections and orientations must be properly identified. The grid generation codes are distinguished among themselves by their balance between interactive and automatic actions and by their modest variations in control. The basic form of GridMan provides a much more substantial level of grid control and will take its input from any of the structured grid generation codes. The communication link to the outside codes is a data file which contains the grid or section of grid

    Top 10 Law School Home Pages of 2010

    Get PDF
    This ranking report attempts to identify the best law school home pages based exclusively on objective criteria. The goal is to assess elements that make websites easier to use for sighted as well as visually-impaired users. Most elements require no special design skills, sophisticated technology or significant expenses. Ranking results in this report represent reasonably relevant elements. In this report, 200 ABA-accredited law school home pages are analyzed and ranked for twenty elements in three broad categories: Design Patterns & Metadata; Accessibility & Validation; and Marketing & Communications. As was the case in 2009, there is still no objective way to account for good taste. For interpreting these results, we don\u27t try to decide if any whole is greater or less than the sum of its parts

    Grid generation for the solution of partial differential equations

    Get PDF
    A general survey of grid generators is presented with a concern for understanding why grids are necessary, how they are applied, and how they are generated. After an examination of the need for meshes, the overall applications setting is established with a categorization of the various connectivity patterns. This is split between structured grids and unstructured meshes. Altogether, the categorization establishes the foundation upon which grid generation techniques are developed. The two primary categories are algebraic techniques and partial differential equation techniques. These are each split into basic parts, and accordingly are individually examined in some detail. In the process, the interrelations between the various parts are accented. From the established background in the primary techniques, consideration is shifted to the topic of interactive grid generation and then to adaptive meshes. The setting for adaptivity is established with a suitable means to monitor severe solution behavior. Adaptive grids are considered first and are followed by adaptive triangular meshes. Then the consideration shifts to the temporal coupling between grid generators and PDE-solvers. To conclude, a reflection upon the discussion, herein, is given

    Intrinsic adaptive mesh techniques

    Get PDF
    An alternating direction adaptive grid movement code was developed and a thesis adaptive angular meshes was directed. The alternating direction code was also established on the NASA Langley computer system and is available for use there. In essence, grid points are moved on an abstract surface above physical space by means of alternating coordinate directions. The abstract surface is formed with the salient solution properties if they can be extracted by a priori physical reasoning; or otherwise, in the absence of such reasoning, by the use of error estimates in some chosen norm. Upon formulation, all important driving properties for adaptive purposes are consolidated into one object - the abstract surface. At a basic level, a uniform distribution of surface points is equivalent to gradient resolution. This arises from a projection back down into physical space. At a higher level, a more accurate view of the abstract surface is obtained when changes in surface direction are also resolved. The appropriate measure for direction changes is normal curvature. It is defined as the rate of change of surface tangent planes as a surface coordinate curve is transversed in uniform increments of arc length

    Thermal Equilibration and Expansion in Nucleus-Nucleus Collision at the AGS

    Full text link
    The rather complete data set of hadron yields from central Si + A collisions at the Brookhaven AGS is used to test whether the system at freeze-out is in thermal and hadro-chemical equilibrium. Rapidity and transverse momentum distributions are discussed with regards to the information they provide on hydrodynamic flow.Comment: 11 pages + 2 uuencoded figure

    Interactive grid generation for turbomachinery flow field simulations

    Get PDF
    The control point form of algebraic grid generation presented provides the means that are needed to generate well structured grids for turbomachinery flow simulations. It uses a sparse collection of control points distributed over the flow domain. The shape and position of coordinate curves can be adjusted from these control points while the grid conforms precisely to all boundaries. An interactive program called TURBO, which uses the control point form, is being developed. Basic features of the code are discussed and sample grids are presented. A finite volume LU implicit scheme is used to simulate flow in a turbine cascade on the grid generated by the program

    Dynamics of local grid manipulations for internal flow problems

    Get PDF
    The control point method of algebraic grid generation is briefly reviewed. The review proceeds from the general statement of the method in 2-D unencumbered by detailed mathematical formulation. The method is supported by an introspective discussion which provides the basis for confidence in the approach. The more complex 3-D formulation is then presented as a natural generalization. Application of the method is carried out through 2-D examples which demonstrate the technique

    Analysis of strong-interaction dynamic stall for laminar flow on airfoils

    Get PDF
    A compressible Navier-Stokes solution procedure is applied to the flow about an isolated airfoil. Two major problem areas were investigated. The first area is that of developing a coordinate system and an initial step in this direction has been taken. An airfoil coordinate system obtained from specification of discrete data points developed and the heat conduction equation has been solved in this system. Efforts required to allow the Navier-Stokes equations to be solved in this system are discussed. The second problem area is that of obtaining flow field solutions. Solutions for the flow about a circular cylinder and an isolated airfoil are presented. In the former case, the prediction is shown to be in good agreement with data

    Optical guidance vidicon test program

    Get PDF
    A laboratory and field test program was conducted to quantify the optical navigation parameters of the Mariner vidicons. A scene simulator and a camera were designed and built for vidicon tests under a wide variety of conditions. Laboratory tests characterized error sources important to the optical navigation process and field tests verified star sensitivity and characterized comet optical guidance parameters. The equipment, tests and data reduction techniques used are described. Key test results are listed. A substantial increase in the understanding of the use of selenium vidicons as detectors for spacecraft optical guidance was achieved, indicating a reduction in residual offset errors by a factor of two to four to the single pixel level
    corecore