1,083 research outputs found
Selenium supplemented fertilization - effects on the selenium content of foods and the selenium intake in Finland
The effect of Se fertilization was distinct. Winter cereals were not affected as much as spring cereals due to the different cultivation and fertilization practice. The variation between the farms was large. In organic cultivation Se content of cereals was low
Binary Models for Marginal Independence
Log-linear models are a classical tool for the analysis of contingency
tables. In particular, the subclass of graphical log-linear models provides a
general framework for modelling conditional independences. However, with the
exception of special structures, marginal independence hypotheses cannot be
accommodated by these traditional models. Focusing on binary variables, we
present a model class that provides a framework for modelling marginal
independences in contingency tables. The approach taken is graphical and draws
on analogies to multivariate Gaussian models for marginal independence. For the
graphical model representation we use bi-directed graphs, which are in the
tradition of path diagrams. We show how the models can be parameterized in a
simple fashion, and how maximum likelihood estimation can be performed using a
version of the Iterated Conditional Fitting algorithm. Finally we consider
combining these models with symmetry restrictions
Dark energy and key physical parameters of clusters of galaxies
We study physics of clusters of galaxies embedded in the cosmic dark energy
background. Under the assumption that dark energy is described by the
cosmological constant, we show that the dynamical effects of dark energy are
strong in clusters like the Virgo cluster. Specifically, the key physical
parameters of the dark mater halos in clusters are determined by dark energy:
1) the halo cut-off radius is practically, if not exactly, equal to the
zero-gravity radius at which the dark matter gravity is balanced by the dark
energy antigravity; 2) the halo averaged density is equal to two densities of
dark energy; 3) the halo edge (cut-off) density is the dark energy density with
a numerical factor of the unity order slightly depending on the halo profile.
The cluster gravitational potential well in which the particles of the dark
halo (as well as galaxies and intracluster plasma) move is strongly affected by
dark energy: the maximum of the potential is located at the zero-gravity radius
of the cluster.Comment: 8 pages, 1 figur
Stein structures: existence and flexibility
This survey on the topology of Stein manifolds is an extract from our recent
joint book. It is compiled from two short lecture series given by the first
author in 2012 at the Institute for Advanced Study, Princeton, and the Alfred
Renyi Institute of Mathematics, Budapest.Comment: 29 pages, 11 figure
Conceptual Problems of Fractal Cosmology
This report continues recent Peebles-Turner debate "Is cosmology solved?" and
considers the first results for Sandage's program for "Practical cosmology". A
review of conceptual problems of modern cosmological models is given, among
them: the nature of the space expansion; recession velocities of distant
galaxies more than velocity of light; cosmological Friedmann force; continuous
creation of gravitating mass in Friedmann's equation; cosmological pressure is
not able to produce a work; cosmological gravitational frequency shift;
Friedmann-Holtsmark paradox; the problem of the cosmological constant;
Einstein's and Mandelbrot's Cosmological Principles; fractality of observed
galaxy distribution; Sandage's 21st problem: Hubble - de Vaucouleurs paradox;
quantum nature of gravity force.Comment: 17 pages, no Figures, report presented at Gamow Memorial Conference,
August 1999, St.-Petersburg, Russi
Evidence for Intrinsic Redshifts in Normal Spiral Galaxies
The Tully-Fisher Relationship (TFR) is utilized to identify anomalous
redshifts in normal spiral galaxies. Three redshift anomalies are identified in
this analysis: (1) Several clusters of galaxies are examined in which late type
spirals have significant excess redshifts relative to early type spirals in the
same clusters, (2) Galaxies of morphology similar to ScI galaxies are found to
have a systematic excess redshift relative to the redshifts expected if the
Hubble Constant is 72 km s-1 Mpc-1, (3) individual galaxies, pairs, and groups
are identified which strongly deviate from the predictions of a smooth Hubble
flow. These redshift deviations are significantly larger than can be explained
by peculiar motions and TFR errors. It is concluded that the redshift anomalies
identified in this analysis are consistent with previous claims for large
non-cosmological (intrinsic) redshifts.Comment: Accepted for publication at Astrophysics&Space Science. 36 pages
including 8 tables and 7 figure
Effect of a reduction in glomerular filtration rate after nephrectomy on arterial stiffness and central hemodynamics: rationale and design of the EARNEST study
Background: There is strong evidence of an association between chronic kidney disease (CKD) and cardiovascular disease. To date, however, proof that a reduction in glomerular filtration rate (GFR) is a causative factor in cardiovascular disease is lacking. Kidney donors comprise a highly screened population without risk factors such as diabetes and inflammation, which invariably confound the association between CKD and cardiovascular disease. There is strong evidence that increased arterial stiffness and left ventricular hypertrophy and fibrosis, rather than atherosclerotic disease, mediate the adverse cardiovascular effects of CKD. The expanding practice of live kidney donation provides a unique opportunity to study the cardiovascular effects of an isolated reduction in GFR in a prospective fashion. At the same time, the proposed study will address ongoing safety concerns that persist because most longitudinal outcome studies have been undertaken at single centers and compared donor cohorts with an inappropriately selected control group.<p></p>
Hypotheses: The reduction in GFR accompanying uninephrectomy causes (1) a pressure-independent increase in aortic stiffness (aortic pulse wave velocity) and (2) an increase in peripheral and central blood pressure.<p></p>
Methods: This is a prospective, multicenter, longitudinal, parallel group study of 440 living kidney donors and 440 healthy controls. All controls will be eligible for living kidney donation using current UK transplant criteria. Investigations will be performed at baseline and repeated at 12 months in the first instance. These include measurement of arterial stiffness using applanation tonometry to determine pulse wave velocity and pulse wave analysis, office blood pressure, 24-hour ambulatory blood pressure monitoring, and a series of biomarkers for cardiovascular and bone mineral disease.<p></p>
Conclusions: These data will prove valuable by characterizing the direction of causality between cardiovascular and renal disease. This should help inform whether targeting reduced GFR alongside more traditional cardiovascular risk factors is warranted. In addition, this study will contribute important safety data on living kidney donors by providing a longitudinal assessment of well-validated surrogate markers of cardiovascular disease, namely, blood pressure and arterial stiffness. If any adverse effects are detected, these may be potentially reversed with the early introduction of targeted therapy. This should ensure that kidney donors do not come to long-term harm and thereby preserve the ongoing expansion of the living donor transplant program.<p></p>
Genome-wide linkage analysis of 972 bipolar pedigrees using single-nucleotide polymorphisms.
Because of the high costs associated with ascertainment of families, most linkage studies of Bipolar I disorder (BPI) have used relatively small samples. Moreover, the genetic information content reported in most studies has been less than 0.6. Although microsatellite markers spaced every 10 cM typically extract most of the genetic information content for larger multiplex families, they can be less informative for smaller pedigrees especially for affected sib pair kindreds. For these reasons we collaborated to pool family resources and carried out higher density genotyping. Approximately 1100 pedigrees of European ancestry were initially selected for study and were genotyped by the Center for Inherited Disease Research using the Illumina Linkage Panel 12 set of 6090 single-nucleotide polymorphisms. Of the ~1100 families, 972 were informative for further analyses, and mean information content was 0.86 after pruning for linkage disequilibrium. The 972 kindreds include 2284 cases of BPI disorder, 498 individuals with bipolar II disorder (BPII) and 702 subjects with recurrent major depression. Three affection status models (ASMs) were considered: ASM1 (BPI and schizoaffective disorder, BP cases (SABP) only), ASM2 (ASM1 cases plus BPII) and ASM3 (ASM2 cases plus recurrent major depression). Both parametric and non-parametric linkage methods were carried out. The strongest findings occurred at 6q21 (non-parametric pairs LOD 3.4 for rs1046943 at 119 cM) and 9q21 (non-parametric pairs logarithm of odds (LOD) 3.4 for rs722642 at 78 cM) using only BPI and schizoaffective (SA), BP cases. Both results met genome-wide significant criteria, although neither was significant after correction for multiple analyses. We also inspected parametric scores for the larger multiplex families to identify possible rare susceptibility loci. In this analysis, we observed 59 parametric LODs of 2 or greater, many of which are likely to be close to maximum possible scores. Although some linkage findings may be false positives, the results could help prioritize the search for rare variants using whole exome or genome sequencing
Spatial clustering in the ESO-Sculptor Survey: two-point correlation functions by galaxy type at redshifts 0.1 - 0.5
We calculate the spatial two-point auto and cross-correlation functions for
the 765 galaxies with Rc<21.5 and 0.1<z<0.51 in the ESO-Sculptor survey, and
explore the segregation effects among the populations of giant (early-type,
late spiral) and dwarf (dE, dI) galaxies. At separation of 0.3 h^-1 Mpc, pairs
of early-type galaxies dominate the clustering over all the other types of
pairs. At intermediate scales, 0.3-5 h^-1 Mpc, mixed pairs of dwarf and giant
galaxies contribute equally as pairs of giant galaxies, whereas the latter
dominate at ~10 h^-1 Mpc. We detect the signature of the transition between the
1-halo and 2-halo regimes which is expected in the scenario of galaxy formation
by hierarchical merging of dark matter halos. The early-type galaxies largely
outdo the late spiral galaxies in their 1-halo component, whereas the 2-halo
components of both giant populations are comparable. The dwarf galaxies have an
intermediate 1-halo component between the 2 giant galaxy types, and their
2-halo component is weak and consistent with null clustering. The present
analysis indicates that the early-type galaxies are preferentially located near
the centers of the most massive halos, whereas late spiral galaxies tend to
occupy their outskirts or the centers of less massive halos. This analysis also
unveils new results on the spatial distribution of dwarf galaxies: at the scale
at which they significantly cluster inside the halos (<0.3 h^-1 Mpc), they are
poorly mixed with the late spiral galaxies, and appear preferentially as
satellites of early-type galaxies.Comment: Astronomy & Astrophysics, in press. 29 pages, 15 color figures, 3
table
Results of the first Arctic Heat Open Science Experiment
Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 99 (2018): 513-520, doi:10.1175/BAMS-D-16-0323.1.Seasonally ice-covered marginal seas are among the most difficult regions in the Arctic to study. Physical constraints imposed by the variable presence of sea ice in all stages of growth and melt make the upper water column and air–sea ice interface especially challenging to observe. At the same time, the flow of solar energy through Alaska’s marginal seas is one of the most important regulators of their weather and climate, sea ice cover, and ecosystems. The deficiency of observing systems in these areas hampers forecast services in the region and is a major contributor to large uncertainties in modeling and related climate projections. The Arctic Heat Open Science Experiment strives to fill this observation gap with an array of innovative autonomous floats and other near-real-time weather and ocean sensing systems. These capabilities allow continuous monitoring of the seasonally evolving state of the Chukchi Sea, including its heat content. Data collected by this project are distributed in near–real time on project websites and on the Global Telecommunications System (GTS), with the objectives of (i) providing timely delivery of observations for use in weather and sea ice forecasts, for model, and for reanalysis applications and (ii) supporting ongoing research activities across disciplines. This research supports improved forecast services that protect and enhance the safety and economic viability of maritime and coastal community activities in Alaska. Data are free and open to all (see www.pmel.noaa.gov/arctic-heat/).This work was supported by NOAA Ocean and Atmospheric Research and the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063 and by the Innovative Technology for Arctic Exploration (ITAE) program at JISAO/PMEL. Jayne, Robbins, and Ekholm were supported by ONR (N00014-12-10110)
- …
