1,582 research outputs found
Comment on "Evidence for Quantized Displacement in Macroscopic Nanomechanical Oscillators"
In a recent Letter, Gaidarzhy et al. [1] claim to have observed evidence for "quantized displacements" of a high-order mode of a nanomechanical oscillator. We contend that the methods employed by the authors are unsuitable in principle to observe such states for any harmonic mode
Intrinsic dissipation in high-frequency micromechanical resonators
We report measurements of intrinsic dissipation in micron-sized suspended resonators machined from single crystals of galium arsenide and silicon. In these experiments on high-frequency micromechanical resonators, designed to understand intrinsic mechanisms of dissipation, we explore dependence of dissipation on temperature, magnetic field, frequency, and size. In contrast to most of the previous measurements of acoustic attenuation in crystalline and amorphous structures in this frequency range, ours is a resonant measurement; dissipation is measured at the natural frequencies of structural resonance, or modes of the structure associated with flexural and torsional motion. In all our samples we find a weakly temperature dependent dissipation at low temperatures. We compare and contrast our data to various probable mechanisms, including thermoelasticity, clamping, anharmonic mode-coupling, surface anisotropy and defect motion, both in bulk and on surface. The observed parametric dependencies indicate that the internal defect motion is the dominant mechanism of intrinsic dissipation in our samples
On-Orbit Solar Dynamics Observatory (SDO) Star Tracker Warm Pixel Analysis
This paper describes the process of identification and analysis of warm pixels in two autonomous star trackers on the Solar Dynamics Observatory (SDO) mission. A brief description of the mission orbit and attitude regimes is discussed and pertinent star tracker hardware specifications are given. Warm pixels are defined and the Quality Index parameter is introduced, which can be explained qualitatively as a manifestation of a possible warm pixel event. A description of the algorithm used to identify warm pixel candidates is given. Finally, analysis of dumps of on-orbit star tracker charge coupled devices (CCD) images is presented and an operational plan going forward is discussed. SDO, launched on February 11, 2010, is operated from the NASA Goddard Space Flight Center (GSFC). SDO is in a geosynchronous orbit with a 28.5 inclination. The nominal mission attitude points the spacecraft X-axis at the Sun, with the spacecraft Z-axis roughly aligned with the Solar North Pole. The spacecraft Y-axis completes the triad. In attitude, SDO moves approximately 0.04 per hour, mostly about the spacecraft Z-axis. The SDO star trackers, manufactured by Galileo Avionica, project the images of stars in their 16.4deg x 16.4deg fields-of-view onto CCD detectors consisting of 512 x 512 pixels. The trackers autonomously identify the star patterns and provide an attitude estimate. Each unit is able to track up to 9 stars. Additionally, each tracker calculates a parameter called the Quality Index, which is a measure of the quality of the attitude solution. Each pixel in the CCD measures the intensity of light and a warns pixel is defined as having a measurement consistently and significantly higher than the mean background intensity level. A warns pixel should also have lower intensity than a pixel containing a star image and will not move across the field of view as the attitude changes (as would a dim star image). It should be noted that the maximum error introduced in the star tracker attitude solution during suspected warm pixel corruptions is within the specified 36 attitude error budget requirement of [35, 70, 70] arcseconds. Thus, the star trackers provided attitude accuracy within the specification for SDO. The star tracker images are intentionally defocused so each star image is detected in more than one CCD pixel. The position of each star is calculated as an intensity-weighted average of the illuminated pixels. The exact method of finding the positions is proprietary to the tracker manufacturer. When a warm pixel happens to be in the vicinity of a star, it can corrupt the calculation of the position of that particular star, thereby corrupting the estimate of the attitude
Monocrystalline silicon carbide nanoelectromechanical systems
SiC is an extremely promising material for nanoelectromechanical systems given its large Young's modulus and robust surface properties. We have patterned nanometer scale electromechanical resonators from single-crystal 3C-SiC layers grown epitaxially upon Si substrates. A surface nanomachining process is described that involves electron beam lithography followed by dry anisotropic and selective electron cyclotron resonance plasma etching steps. Measurements on a representative family of the resulting devices demonstrate that, for a given geometry, nanometer-scale SiC resonators are capable of yielding substantially higher frequencies than GaAs and Si resonators
High-Frequency Nanofluidics: An Experimental Study using Nanomechanical Resonators
Here we apply nanomechanical resonators to the study of oscillatory fluid
dynamics. A high-resonance-frequency nanomechanical resonator generates a
rapidly oscillating flow in a surrounding gaseous environment; the nature of
the flow is studied through the flow-resonator interaction. Over the broad
frequency and pressure range explored, we observe signs of a transition from
Newtonian to non-Newtonian flow at , where is a
properly defined fluid relaxation time. The obtained experimental data appears
to be in close quantitative agreement with a theory that predicts purely
elastic fluid response as
Universal transport in 2D granular superconductors
The transport properties of quench condensed granular superconductors are
presented and analyzed. These systems exhibit transitions from insulating to
superconducting behavior as a function of inter-grain spacing.
Superconductivity is characterized by broad transitions in which the resistance
drops exponentially with reducing temperature. The slope of the log R versus T
curves turns out to be universaly dependent on the normal state film resistance
for all measured granular systems. It does not depend on the material, critical
temperature, geometry, or experimental set-up. We discuss possible physical
scenarios to explain these findings.Comment: 4 pages, 3 figure
Anomalous Hopping Exponents of Ultrathin Films of Metals
The temperature dependence of the resistance R(T) of ultrathin
quench-condensed films of Ag, Bi, Pb and Pd has been investigated. In the most
resistive films, R(T)=Roexp(To/T)^x, where x=0.75. Surprisingly, the exponent x
was found to be constant for a wide range of Ro and To in all four materials,
possibly implying a consistent underlying conduction mechanism. The results are
discussed in terms of several different models of hopping conduction.Comment: 6 pages, 5 figure
q-Breathers and thermalization in acoustic chains with arbitrary nonlinearity index
Nonlinearity shapes lattice dynamics affecting vibrational spectrum,
transport and thermalization phenomena. Beside breathers and solitons one finds
the third fundamental class of nonlinear modes -- -breathers -- periodic
orbits in nonlinear lattices, exponentially localized in the reciprocal mode
space. To date, the studies of -breathers have been confined to the cubic
and quartic nonlinearity in the interaction potential. In this paper we study
the case of arbitrary nonlinearity index in an acoustic chain. We
uncover qualitative difference in the scaling of delocalization and stability
thresholds of -breathers with the system size: there exists a critical index
, below which both thresholds (in nonlinearity strength) tend to
zero, and diverge when above. We also demonstrate that this critical index
value is decisive for the presence or absense of thermalization. For a generic
interaction potential the mode space localized dynamics is determined only by
the three lowest order nonlinear terms in the power series expansion.Comment: 5 pages, 4 figure
Anisotropic Magnetoconductance in Quench-Condensed Ultrathin Beryllium Films
Near the superconductor-insulator (S-I) transition, quench-condensed
ultrathin Be films show a large magnetoconductance which is highly anisotropic
in the direction of the applied field. Film conductance can drop as much as
seven orders of magnitude in a weak perpendicular field (< 1 T), but is
insensitive to a parallel field in the same field range. We believe that this
negative magnetoconductance is due to the field de-phasing of the
superconducting pair wavefunction. This idea enables us to extract the finite
superconducting phase coherence length in nearly superconducting films. Our
data indicate that this local phase coherence persists even in highly
insulating films in the vicinity of the S-I transition.Comment: 4 pages, 4 figure RevTex, Typos Correcte
- …
