341 research outputs found
Rainbow Spacetime from a Nonlocal Gravitational Uncertainty Principle
Occurrence of spacetime singularities is one of the peculiar features of
Einstein gravity, signalling limitation on probing short distances in
spacetime. This alludes to the existence of a fundamental length scale in
nature. On contrary, Heisenberg quantum uncertainty relation seems to allow for
probing arbitrarily small length scales. To reconcile these two conflicting
ideas in line with a well known framework of quantum gravity, several
modifications of Heisenberg algebra have been proposed. However, it has been
extensively argued that such a minimum length would introduce nonlocality in
theories of quantum gravity. In this Letter, we analyze a previously proposed
deformation of the Heisenberg algebra (i.e. ) for a particle confined in a box subjected to a gravitational field.
For the problem in hand, such deformation seems to yield an energy-dependent
behavior of spacetime in a way consistent with gravity's rainbow, hence
demonstrating a connection between non-locality and gravity's rainbow.Comment: 5 pages, revtex4, 2 figures, to appear in EPL (Europhysics Letters
Recommended from our members
Morphological and Molecular Analysis of Three Celery Accessions
Celery (Apium graveolens L.), a culinary herb and vegetable, is considered a good source of the essential oil and phenolic acids for use as a food, medicine, and flavoring agent. Substantial plant to plant variation within celery, however, indicates a high degree of genetic inconsistency that affects plant quality and yield. This study evaluated the fresh and dry weights and leaf characteristics of three celery genotypes grown in a greenhouse. The genotypes were also screened for polymorphic RAPD (Random Amplified Polymorphic DNA) markers. Celery Accessions were found to differ in fresh and dry weight. Our study demonstrated that RAPD technique could be a suitable tool for genotypes identification and classification in celery
Buffalo Genome Projects: Current Situation and Future Perspective in Improving Breeding Programs
Buffaloes are farm animals that contribute to food security by providing high
quality meat and milk. They can better tolerate the adverse effects of global
climate change on their meat and milk production. Despite their advantages,
buffaloes are heavily neglected animals with fewer studies compared to other
farm animals, hence, the real potential of buffaloes has never been realized.
The complete genome sequencing projects of buffaloes are essential to better
understanding the buffalos biology and production since they allow scientists
to identify important genes and understand how the gene networks interact to
determine the critical features of buffaloes. The genome projects are also
valuable for gaining better knowledge of growth, development, maintenance, and
determining factors associated with increased meat and milk production.
Furthermore, having access to a complete genome of high quality and
comprehensive annotations provides a powerful tool in breeding programs. The
current review surveyed the publicly available buffalo genome projects and
studied the impact of incorporating genomic selection into the buffalo breeding
program. Our survey of the publicly available buffalo genome projects showed
the promise of genomic selection in developing water buffalo science and
technology for food security on a global scale.Comment: two figure
Molecular characterization of two AP2/ERF transcription factor genes from Egyptian tomato cultivar (Edkawy)
The tomato is ranked first amongst vegetable crops in Egypt in relation to surface area and production. The Egyptian tomato cultivar Edkawy has shown abiotic stress tolerance characteristics. However, there is not much information about the molecular characterization of this cultivar. Furthermore, information regarding the identification of abiotic stress tolerance genes from the Edkawy tomato cultivar is lacking. Here, we investigated the ability of the Edkawy cultivar to tolerate drought stress. Two varieties were used as a control in this study; Peto86 (sensitive variety) and Strain B (tolerant variety). Edkawy, Peto86 and Strain B varieties were exposed to drought stress by reducing the water supply gradually. Interestingly, Edkawy demonstrated a remarkable tolerance phenotype to drought stress. Furthermore, we identified and isolated two members of the AP2/ERF transcription factor family from Edkawy which are associated with abiotic stress, particularly drought, i.e. ERF1 and ERF5. Protein prediction, validation and active site prediction of ERF1 and ERF5 were also determined. In addition to the domain obtained by the pfam online tool, the interaction between Edkawy ERFs proteins and other proteins in the Solanaceae family was obtained. Furthermore, subcellular localization was determined by the ngLOC and Plant-mPLoc online tools. Characterization of the Edkawy tomato cultivar and isolation and identification of such transcription factors will help in the engineering of tomato plants with abiotic stress tolerance
Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET
Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate
Endogenous overexpression of Populus MYB186 increases trichome density, improves insect pest resistance, and impacts plant growth
Trichomes are specialized epidermal cells that generally play a role in reducing transpiration and act as a deterrent to herbivory. In a screen of activation-tagged Populus tremula × Populus alba 717-1B4 trees, we identified a mutant line, fuzzy , with increased foliar trichome density. This mutant also had a 35% increase in growth rate and a 200% increase in the rate of photosynthesis as compared with wild-type poplar. The fuzzy mutant had significant resistance to feeding by larvae of the white-spotted tussock moth ( Orgyia leucostigma ), a generalist insect pest of poplar trees. The fuzzy trichome phenotype is attributable to activation tagging and increased expression of the gene encoding PtaMYB186 , which is related to Arabidopsis thaliana MYB106 , a known regulator of trichome initiation. The fuzzy phenotype can be recapitulated by overexpressing PtaMYB186 in poplar. PtaMYB186 overexpression results in reconfiguration of the poplar transcriptome, with changes in the transcript abundance of suites of genes that are related to trichome differentiation. It is notable that a plant with misexpression of a gene responsible for trichome development also had altered traits related to growth rate and pest resistance, suggesting that non-intuitive facets of plant development might be useful targets for plant improvement.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79232/1/TPJ_4343_sm_FigsS1-S3.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/79232/2/j.1365-313X.2010.04343.x.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/79232/3/TPJ_4343_sm_TableS5.pd
Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch
Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightly-linked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A.Peer reviewe
Predictive JET current ramp-up modelling using QuaLiKiz-neural-network
This work applies the coupled JINTRAC and QuaLiKiz-neural-network (QLKNN) model on the ohmic current ramp-up phase of a JET D discharge. The chosen scenario exhibits a hollow T-e profile attributed to core impurity accumulation, which is observed to worsen with the increasing fuel ion mass from D to T. A dynamic D simulation was validated, evolving j, n(e), T-e, T-i, n(Be), n(Ni), and n(W) for 7.25 s along with self-consistent equilibrium calculations, and was consequently extended to simulate a pure T plasma in a predict-first exercise. The light impurity (Be) accounted for Z(eff) while the heavy impurities (Ni, W) accounted for Prad. This study reveals the role of transport on the Te hollowing, which originates from the isotope effect on the electron-ion energy exchange affecting T-i. This exercise successfully affirmed isotopic trends from previous H experiments and provided engineering targets used to recreate the D q-profile in T experiments, demonstrating the potential of neural network surrogates for fast routine analysis and discharge design. However, discrepancies were found between the impurity transport behaviour of QuaLiKiz and QLKNN, which lead to notable T-e hollowing differences. Further investigation into the turbulent component of heavy impurity transport is recommended
Correlation analysis for energy losses, waiting times and durations of type I edge-localized modes in the Joint European Torus
Several important ELM control techniques are in large part motivated by the empirically observed inverse relationship between average ELM energy loss and ELM frequency in a plasma. However, to ensure a reliable effect on the energy released by the ELMs, it is important that this relation is verified for individual ELM events. Therefore, in this work the relation between ELM energy loss (W-ELM) and waiting time (Delta t(ELM)) is investigated for individual ELMs in a set of ITER-like wall plasmas in JET. A comparison is made with the results from a set of carbon-wall and nitrogen-seeded ITER-like wall JET plasmas. It is found that the correlation between W-ELM and Delta t(ELM) for individual ELMs varies from strongly positive to zero. Furthermore, the effect of the extended collapse phase often accompanying ELMs from unseeded JET ILW plasmas and referred to as the slow transport event (STE) is studied on the distribution of ELM durations, and on the correlation between W-ELM and Delta t(ELM). A high correlation between W-ELM and Delta t(ELM), comparable to CW plasmas is only found in nitrogen-seeded ILW plasmas. Finally, a regression analysis is performed using plasma engineering parameters as predictors for determining the region of the plasma operational space with a high correlation between W-ELM and Delta t(ELM)
- …
