107 research outputs found

    Functional Analysis of the Murine Oligoadenylate Synthetase 1b (Oas1b)

    Get PDF
    The flavivirus resistance gene, Flv, in mice has been identified as 2\u27-5\u27 oligoadenylate synthetase 1b (Oas1b). Susceptible mice produce a protein that is truncated (Oas1btr) at the C-terminus due to a premature stop codon encoded by a C820T transition. Mice produce 8 Oas1 proteins, Oas1a-Oas1h. In the present study, Oas1a, Oas1b and Oas1btr were expressed as MBP-fusion proteins in bacteria and purified. 2-5A synthetase activity was demonstrated using MBP-Oas1a, while neither MBP-Oas1b nor MBP-Oas1btr were functionally active. The 2-5A synthetase activity of MBP-Oas1a was inhibited in a dose-dependent manner by the addition of MBP-Oas1b but not MBPOas1btr. Finally, three RNA probes were synthesized from the 3\u27 end of the WNV Eg101 genome and used to test the ability of the expressed Oas1 proteins to bind to viral RNA. Results of the RNA binding activity assays suggest Oas1 proteins may specifically interact with regions of WNV RNA

    Study of Innate Immune Response Components in West Nile Virus Infected Cells

    Get PDF
    Two cellular innate responses, the dsRNA protein kinase (PKR) pathway and the 2\u27-5\u27 oligoadenylate synthetase (OAS)/RNase L pathway, are activated by dsRNAs produced by viruses and reduce translation of host and viral mRNAs. PKR activation results in eIF2a phosphorylation. As a consequence of eIF2a phosphorylation, stress granules (SGs) are formed by the aggregation of stalled SG proteins with pre-initiation complexes and mRNA. West Nile virus (WNV) infections do not induce eIF2a phosphorylation despite upregulation of PKR mRNA and protein suggesting an active suppression of PKR activation. Assessment of the mechanism of suppression of PKR activation in WNV-infected cells indicated that WNV infections do not induce PKR phosphorylation so that active suppression is not required. In contrast to infections with natural strains of WNV, infections with the chimeric W956 infectious clone (IC) virus efficiently induce SGs in infected cells. After two serial passages, the IC virus generated a mutant (IC-P) that does not induce SGs efficiently but does induce the formation of NS3 granules that persist throughout the infection. This mutant was characterized. 2\u27-5\u27 oligoadenylate synthetases (OAS) are activated by viral dsRNA to produce 2-5A oligos that activate RNase L to digest viral and cellular RNAs. Resistance to flavivirus-induced disease in mice is conferred by the full-length 2\u27-5\u27 oligoadenylate synthetase 1b (Oas1b) protein. Oas1b is an inactive synthetase that is able to suppress the in vitro synthetase activity of the active synthetase Oas1a. The ability of Oas1b to inhibit Oas1a synthetase activity in vivo and to form a heteromeric complex with Oas1a was investigated. Oas1b suppressed 2-5A production in vivo. Oas1a and Oas1b overexpressed in mammalian cells co-immunoprecipitated indicating the formation of heteromeric complexes by these proteins. Unlike mice, humans encode a single OAS1 gene that generates alternatively spliced transcripts encoding different isoforms. Synthetase activity has previously been reported for only three of the isoforms. The in vitro synthetase activity of additional OAS1 isoforms was analyzed. All tested isoforms synthesized higher order 2-5A oligos. However, p44A only produced 2-5A dimers which inhibit RNase L

    Response Modifiers: Tweaking the Immune Response Against Influenza A Virus

    Get PDF
    Despite causing pandemics and yearly epidemics that result in significant morbidity and mortality, our arsenal of options to treat influenza A virus (IAV) infections remains limited and is challenged by the virus itself. While vaccination is the preferred intervention strategy against influenza, its efficacy is reduced in the elderly and infants who are most susceptible to severe and/or fatal infections. In addition, antigenic variation of IAV complicates the production of efficacious vaccines. Similarly, effectiveness of currently used antiviral drugs is jeopardized by the development of resistance to these drugs. Like many viruses, IAV is reliant on host factors and signaling-pathways for its replication, which could potentially offer alternative options to treat infections. While host-factors have long been recognized as attractive therapeutic candidates against other viruses, only recently they have been targeted for development as IAV antivirals. Future strategies to combat IAV infections will most likely include approaches that alter host-virus interactions on the one hand or dampen harmful host immune responses on the other, with the use of biological response modifiers (BRMs). In principle, BRMs are biologically active agents including antibodies, small peptides, and/or other (small) molecules that can influence the immune response. BRMs are already being used in the clinic to treat malignancies and autoimmune diseases. Repurposing such agents would allow for accelerated use against severe and potentially fatal IAV infections. In this review, we will address the potential therapeutic use of different BRM classes to modulate the immune response induced after IAV infections

    Nucleoside modifications in RNA limit activation of 2′-5′-oligoadenylate synthetase and increase resistance to cleavage by RNase L

    Get PDF
    The interferon-induced enzymes 2′-5′-oligoadenylate synthetase (OAS) and RNase L are key components of innate immunity involved in sensory and effector functions following viral infections. Upon binding target RNA, OAS is activated to produce 2′-5′-linked oligoadenylates (2-5A) that activate RNase L, which then cleaves single-stranded self and non-self RNA. Modified nucleosides that are present in cellular transcripts have been shown to suppress activation of several RNA sensors. Here, we demonstrate that in vitro transcribed, unmodified RNA activates OAS, induces RNase L-mediated ribosomal RNA (rRNA) cleavage and is rapidly cleaved by RNase L. In contrast, RNA containing modified nucleosides activates OAS less efficiently and induces limited rRNA cleavage. Nucleoside modifications also make RNA resistant to cleavage by RNase L. Examining translation in RNase L−/− cells and mice confirmed that RNase L activity reduces translation of unmodified mRNA, which is not observed with modified mRNA. Additionally, mRNA containing the nucleoside modification pseudouridine is translated longer and has an extended half-life. The observation that modified nucleosides in RNA reduce 2-5A pathway activation joins OAS and RNase L to the list of RNA sensors and effectors whose functions are limited when RNA is modified, confirming the role of nucleoside modifications in suppressing immune recognition of RNA

    Giving the Genes a Shuffle: Using Natural Variation to Understand Host Genetic Contributions to Viral Infections

    Get PDF
    The laboratory mouse has proved an invaluable model to identify host factors that regulate the progression and outcome of virus-induced disease. The paradigm is to use single-gene knockouts in inbred mouse strains or genetic mapping studies using biparental mouse populations. However, genetic variation among these mouse strains is limited compared with the diversity seen in human populations. To address this disconnect, a multiparental mouse population has been developed to specifically dissect the multigenetic regulation of complex disease traits. The Collaborative Cross (CC) population of recombinant inbred mouse strains is a well-suited systems-genetics tool to identify susceptibility alleles that control viral and microbial infection outcomes and immune responses and to test the promise of personalized medicine

    Genetically diverse CC-founder mouse strains replicate the human influenza gene expression signature.

    Get PDF
    Influenza A viruses (IAV) are zoonotic pathogens that pose a major threat to human and animal health. Influenza virus disease severity is influenced by viral virulence factors as well as individual differences in host response. We analyzed gene expression changes in the blood of infected mice using a previously defined set of signature genes that was derived from changes in the blood transcriptome of IAV-infected human volunteers. We found that the human signature was reproduced well in the founder strains of the Collaborative Cross (CC) mice, thus demonstrating the relevance and importance of mouse experimental model systems for studying human influenza disease

    West Nile virus infection does not induce PKR activation in rodent cells

    Get PDF
    AbstractdsRNA-activated protein kinase (PKR) is activated by viral dsRNAs and phosphorylates eIF2a reducing translation of host and viral mRNA. Although infection with a chimeric West Nile virus (WNV) efficiently induced PKR and eIF2a phosphorylation, infections with natural lineage 1 or 2 strains did not. Investigation of the mechanism of suppression showed that among the cellular PKR inhibitor proteins tested, only Nck, known to interact with inactive PKR, colocalized and co-immunoprecipitated with PKR in WNV-infected cells and PKR phosphorylation did not increase in infected Nck1,2−/− cells. Several WNV stem-loop RNAs efficiently activated PKR in vitro but not in infected cells. WNV infection did not interfere with intracellular PKR activation by poly(I:C) and similar virus yields were produced by control and PKR−/− cells. The results indicate that PKR phosphorylation is not actively suppressed in WNV-infected cells but that PKR is not activated by the viral dsRNA in infected cells
    corecore