15 research outputs found
Retinoic acid inducible gene I Activates innate antiviral response against human parainfluenza virus type 3
Human parainfluenza virus type 3 (HPIV3) is a respiratory paramyxovirus that infects lung epithelial cells to cause high morbidity among infants and children. To date, no effective vaccine or antiviral therapy exists for HPIV3 and therefore, it is important to study innate immune antiviral response induced by this virus in infected cells. Type-I interferons (IFN, interferon-α/β) and tumor necrosis factor-α (TNFα activated by NFκB) are potent antiviral cytokines that play an important role during innate immune antiviral response. A wide-spectrum of viruses utilizes pattern recognition receptors (PRRs) like toll-like receptors (TLRs) and RLH (RIG like helicases) receptors such as RIGI (retinoic acid inducible gene -I) and Mda5 to induce innate antiviral response. Previously it was shown that both TNFα and IFNβ are produced from HPIV3 infected cells. However, the mechanism by which infected cells activated innate response following HPIV3 infection was not known. In the current study, we demonstrated that RIGI serves as a PRR in HPIV3 infected cells to induce innate antiviral response by expressing IFNβ (via activation of interferon regulatory factor-3 or IRF3) and TNFα (via activation of NF-κB)
OAS1 Polymorphisms Are Associated with Susceptibility to West Nile Encephalitis in Horses
West Nile virus, first identified within the United States in 1999, has since spread across the continental states and infected birds, humans and domestic animals, resulting in numerous deaths. Previous studies in mice identified the Oas1b gene, a member of the OAS/RNASEL innate immune system, as a determining factor for resistance to West Nile virus (WNV) infection. A recent case-control association study described mutations of human OAS1 associated with clinical susceptibility to WNV infection. Similar studies in horses, a particularly susceptible species, have been lacking, in part, because of the difficulty in collecting populations sufficiently homogenous in their infection and disease states. The equine OAS gene cluster most closely resembles the human cluster, with single copies of OAS1, OAS3 and OAS2 in the same orientation. With naturally occurring susceptible and resistant sub-populations to lethal West Nile encephalitis, we undertook a case-control association study to investigate whether, similar to humans (OAS1) and mice (Oas1b), equine OAS1 plays a role in resistance to severe WNV infection. We identified naturally occurring single nucleotide mutations in equine (Equus caballus) OAS1 and RNASEL genes and, using Fisher's Exact test, we provide evidence that mutations in equine OAS1 contribute to host susceptibility. Virtually all of the associated OAS1 polymorphisms were located within the interferon-inducible promoter, suggesting that differences in OAS1 gene expression may determine the host's ability to resist clinical manifestations associated with WNV infection
Hepatitis C Virus Reveals a Novel Early Control in Acute Immune Response
Recognition of viral RNA structures by the intracytosolic RNA helicase RIG-I triggers induction of innate immunity. Efficient induction requires RIG-I ubiquitination by the E3 ligase TRIM25, its interaction with the mitochondria-bound MAVS protein, recruitment of TRAF3, IRF3- and NF-κB-kinases and transcription of Interferon (IFN). In addition, IRF3 alone induces some of the Interferon-Stimulated Genes (ISGs), referred to as early ISGs. Infection of hepatocytes with Hepatitis C virus (HCV) results in poor production of IFN despite recognition of the viral RNA by RIG-I but can lead to induction of early ISGs. HCV was shown to inhibit IFN production by cleaving MAVS through its NS3/4A protease and by controlling cellular translation through activation of PKR, an eIF2α-kinase containing dsRNA-binding domains (DRBD). Here, we have identified a third mode of control of IFN induction by HCV. Using HCVcc and the Huh7.25.CD81 cells, we found that HCV controls RIG-I ubiquitination through the di-ubiquitine-like protein ISG15, one of the early ISGs. A transcriptome analysis performed on Huh7.25.CD81 cells silenced or not for PKR and infected with JFH1 revealed that HCV infection leads to induction of 49 PKR-dependent genes, including ISG15 and several early ISGs. Silencing experiments revealed that this novel PKR-dependent pathway involves MAVS, TRAF3 and IRF3 but not RIG-I, and that it does not induce IFN. Use of PKR inhibitors showed that this pathway requires the DRBD but not the kinase activity of PKR. We then demonstrated that PKR interacts with HCV RNA and MAVS prior to RIG-I. In conclusion, HCV recruits PKR early in infection as a sensor to trigger induction of several IRF3-dependent genes. Among those, ISG15 acts to negatively control the RIG-I/MAVS pathway, at the level of RIG-I ubiquitination.These data give novel insights in the machinery involved in the early events of innate immune response
