137 research outputs found
The new versatile general purpose surface-muon instrument (GPS) based on silicon photomultipliers for SR measurements on a continuous-wave beam
We report on the design and commissioning of a new spectrometer for muon-spin
relaxation/rotation studies installed at the Swiss Muon Source (SS) of the
Paul Scherrer Institute (PSI, Switzerland). This new instrument is essentially
a new design and replaces the old general-purpose surface-muon instrument (GPS)
which has been for long the workhorse of the SR user facility at PSI. By
making use of muon and positron detectors made of plastic scintillators read
out by silicon photomultipliers (SiPMs), a time resolution of the complete
instrument of about 160 ps (standard deviation) could be achieved. In addition,
the absence of light guides, which are needed in traditionally built SR
instrument to deliver the scintillation light to photomultiplier tubes located
outside magnetic fields applied, allowed us to design a compact instrument with
a detector set covering an increased solid angle compared to the old GPS.Comment: 11 pages, 11 figure
Pressure Induced Static Magnetic Order in Superconducting FeSe_1-x
We report on a detailed investigation of the electronic phase diagram of
FeSe_1-x under pressures up to 1.4GPa by means of AC magnetization and
muon-spin rotation. At a pressure \simeq0.8GPa the non-magnetic and
superconducting FeSe_1-x enters a region where long range static magnetic order
is realized above T_c and bulk superconductivity coexists and competes on short
length scales with the magnetic order below T_c. For even higher pressures an
enhancement of both the magnetic and the superconducting transition
temperatures as well as of the corresponding order parameters is observed.
These exceptional properties make FeSe1-x to be one of the most interesting
superconducting systems investigated extensively at present.Comment: 5 pages, 3 figure
Piezoelectric-driven uniaxial pressure cell for muon spin relaxation and neutron scattering experiments
We present a piezoelectric-driven uniaxial pressure cell that is optimized for muon spin relaxation and neutron scattering experiments and that is operable over a wide temperature range including cryogenic temperatures. To accommodate the large samples required for these measurement techniques, the cell is designed to generate forces up to ∼1000 N. To minimize the background signal, the space around the sample is kept as open as possible. We demonstrate here that by mounting plate-like samples with epoxy, a uniaxial stress exceeding 1 GPa can be achieved in an active volume of at least 5 mm3. We show that for practical operation, it is important to monitor both the force and displacement applied to the sample. In addition, because time is critical during facility experiments, samples are mounted in detachable holders that can be rapidly exchanged. The piezoelectric actuators are likewise contained in an exchangeable cartridge. © 2020 Author(s)
Facile formation of highly mobile supported lipid bilayers on surface-quaternized pH-responsive polymer brushes
Poly(2-dimethylamino)ethyl methacrylate) (PDMA) brushes are grown from planar substrates via surface atom transfer radical polymerization (ATRP). Quaternization of these brushes is conducted using 1-iodooctadecane in n-hexane, which is a non-solvent for PDMA. Ellipsometry, AFM, and water contact angle measurements show that surface-confined quaternization occurs under these conditions, producing pH-responsive brushes that have a hydrophobic upper surface. Systematic variation of the 1-iodooctadecane concentration and reaction time enables the mean degree of surface quaternization to be optimized. Relatively low degrees of surface quaternization (ca. 10 mol % as judged by XPS) produce brushes that enable the formation of supported lipid bilayers, with the hydrophobic pendent octadecyl groups promoting in situ rupture of lipid vesicles. Control experiments confirm that quaternized PDMA brushes prepared in a good brush solvent (THF) produce non-pH-responsive brushes, presumably because the pendent octadecyl groups form micelle-like physical cross-links throughout the brush layer. Supported lipid bilayers (SLBs) can also be formed on the non-quaternized PDMA precursor brushes, but such structures proved to be unstable to small changes in pH. Thus, surface quaternization of PDMA brushes using 1-iodooctadecane in n-hexane provides the best protocol for the formation of robust SLBs. Fluorescence recovery after photobleaching (FRAP) studies of such SLBs indicate diffusion coefficients (2.8 ± 0.3 μm s–1) and mobile fractions (98 ± 2%) that are comparable to the literature data reported for SLBs prepared directly on planar glass substrates
Kinetic solvent effects on 1,3-dipolar cycloadditions of benzonitrile oxide
The kinetics of 1,3-dipolar cycloadditions of benzonitrile oxide with a series of N-substituted maleimides and with cyclopentene are reported for water, a wide range of organic solvents and binary solvent mixtures. The results indicate the importance of both solvent polarity and specific hydrogen-bond interactions in governing the rates of the reactions. The aforementioned reactions are examples for which these factors often counteract, leading to a complex dependence of rate constants on the nature of the solvent. For the reactions of N-ethylmaleimide and N-n-butylmaleimide with benzonitrile oxide, isobaric activation parameters have been determined in several organic solvents, water, and water–1-propanol mixtures. Interestingly, the activation parameters reveal significant differences in solvation in different solvents that are not clearly reflected in the rate constants. In highly aqueous mixtures, enforced hydrophobic interactions lead to an increase in rate constant, relative to organic solvents. However, the overall rate enhancement in water is modest, if present at all, because the solvent polarity diminishes the rate constant. This pattern contrasts with common Diels–Alder reactions, where polarity, hydrogen-bond donor capacity and enforced hydrophobic interactions work together, which can result in impressive rate accelerations in water.
Using uniaxial stress to probe the relationship between competing superconducting states in a cuprate with spin-stripe order
We report muon spin rotation and magnetic susceptibility experiments on
in-plane stress effects on the static spin-stripe order and superconductivity
in the cuprate system La2-xBaxCuO4 with x = 0.115. An extremely low uniaxial
stress of 0.1 GPa induces a substantial decrease in the magnetic volume
fraction and a dramatic rise in the onset of 3D superconductivity, from 10 to
32 K; however, the onset of at-least-2D superconductivity is much less
sensitive to stress. These results show not only that large-volume-fraction
spin-stripe order is anti-correlated with 3D superconducting (SC) coherence,
but also that these states are energetically very finely balanced. Moreover,
the onset temperatures of 3D superconductivity and spin-stripe order are very
similar in the large stress regime. These results strongly suggest a similar
pairing mechanism for spin-stripe order, the spatially-modulated 2D and uniform
3D SC orders, imposing an important constraint on theoretical models.Comment: To appear in Physical Review Letters (2020
Designing the stripe-ordered cuprate phase diagram through uniaxial-stress
The ability to efficiently control charge and spin in the cuprate
high-temperature superconductors is crucial for fundamental research and
underpins technological development. Here, we explore the tunability of
magnetism, superconductivity and crystal structure in the stripe phase of the
cuprate La_2-xBa_xCuO_4, with x = 0.115 and 0.135, by employing
temperature-dependent (down to 400 mK) muon-spin rotation and AC
susceptibility, as well as X-ray scattering experiments under compressive
uniaxial stress in the CuO_2 plane. A sixfold increase of the 3-dimensional
(3D) superconducting critical temperature T_c and a full recovery of the 3D
phase coherence is observed in both samples with the application of extremely
low uniaxial stress of 0.1 GPa. This finding demonstrates the removal of the
well-known 1/8-anomaly of cuprates by uniaxial stress. On the other hand, the
spin-stripe order temperature as well as the magnetic fraction at 400 mK show
only a modest decrease under stress. Moreover, the onset temperatures of 3D
superconductivity and spin-stripe order are very similar in the large stress
regime. However, a substantial decrease of the magnetic volume fraction and a
full suppression of the low-temperature tetragonal structure is found at
elevated temperatures, which is a necessary condition for the development of
the 3D superconducting phase with optimal T_c. Our results evidence a
remarkable cooperation between the long-range static spin-stripe order and the
underlying crystalline order with the three-dimensional fully coherent
superconductivity. Overall, these results suggest that the stripe- and the SC
order may have a common physical mechanism.Comment: 11 pages, 5 figures. This work builds on our earlier findings on
LBCO, arXiv:2008.01159, and substantially expands i
Designing the stripe-ordered cuprate phase diagram through uniaxial-stress
The ability to efficiently control charge and spin in the cuprate high-temperature superconductors is crucial for fundamental research and underpins technological development. Here, we explore the tunability of magnetism, superconductivity, and crystal structure in the stripe phase of the cuprate La[Formula: see text]Ba[Formula: see text]CuO[Formula: see text], with [Formula: see text] = 0.115 and 0.135, by employing temperature-dependent (down to 400 mK) muon-spin rotation and AC susceptibility, as well as X-ray scattering experiments under compressive uniaxial stress in the CuO[Formula: see text] plane. A sixfold increase of the three-dimensional (3D) superconducting critical temperature [Formula: see text] and a full recovery of the 3D phase coherence is observed in both samples with the application of extremely low uniaxial stress of [Formula: see text]0.1 GPa. This finding demonstrates the removal of the well-known 1/8-anomaly of cuprates by uniaxial stress. On the other hand, the spin-stripe order temperature as well as the magnetic fraction at 400 mK show only a modest decrease under stress. Moreover, the onset temperatures of 3D superconductivity and spin-stripe order are very similar in the large stress regime. However, strain produces an inhomogeneous suppression of the spin-stripe order at elevated temperatures. Namely, a substantial decrease of the magnetic volume fraction and a full suppression of the low-temperature tetragonal structure is found under stress, which is a necessary condition for the development of the 3D superconducting phase with optimal [Formula: see text]. Our results evidence a remarkable cooperation between the long-range static spin-stripe order and the underlying crystalline order with the three-dimensional fully coherent superconductivity. Overall, these results suggest that the stripe- and the SC order may have a common physical mechanism
- …
