125 research outputs found

    Essential-oil composition of Isatis floribunda Boiss. ex Bornm. aerial parts from Turkey

    Get PDF
    There is just one article in the literature in regard to the essential-oil composition of Isatis floribunda Boiss. ex Bornm. (Brassicaceae). Previously, a flower and root extract of I. floribunda was reported to be rich in phenolic compounds, especially chlorogenic acid, p-coumaric acid and quercetin [1]. The current study aims to provide information about the essential-oil composition of aerial parts of I. floribunda. Isatis floribunda was collected from Ankara-Beypazarı. The essential oil was obtained by hydrodistillation of the air-dried aerial parts using a Clevenger apparatus for 3 h. The essential-oil yield was 0.03 mL per 100 g of plant material. The essential oil was trapped in n-hexane (1 mL) dried over anhydrous Na2SO4 and analyzed directly by GC-MS without further dilution. The essential oil was analyzed with an Agilent 5977 MSD GC-MS system operating in EI mode; injector and MS transfer line temperatures were set at 250 °C. Splitless injection was used in the analysis. Innowax FSC column (60 m x 0.25 mm, 0.25 µm film thickness) and helium as the carrier gas (1 mL/min) were used in GC-MS analyses. The oven temperature program was: 60 °C for 10 min and then raised to 220 °C at a rate of 4 °C/min, afterwards the temperature was kept constant at 220 °C for 10 min and then raised to 240 °C at a rate of 1 °C/min. Mass spectra were recorded at 70 eV with the mass range m/z 35-425. Relative amounts of the separated compounds were calculated from the integration of the peaks in MS chromatograms. Identification of essential-oil components was carried out by comparison of their retention indices (RI), relative to a series of n-alkanes (C5 to C30), with the literature values, as well as by mass spectral comparison. The aerial parts essential oil of I. floribunda yielded an essential oil that is rich in n-alkanes and saturated fatty acids. The major components of the essential oil were dodecanoic acid (28.6%), nonacosane (11.0%), hexadecanoic acid (10.0%), tetradecanoic acid (8.4%), methyl octadecanoate (4.8%), decanoic acid (4.6%), and hexahydrofarnesyl acetone (3.5%). We believe our study will stimulate further research on the chemistry of this species

    Targeting novel antigens in the arterial wall in thromboangiitis obliterans.

    Get PDF
    Thromboangiitis obliterans is an inflammatory disease possibly resulting from cigarette smoking as a primary etiologic factor, perhaps as a delayed type of hypersensitivity or toxic angiitis. As little is known about the pathogenesis of the disease, we aimed to determine novel antigens that might be responsible from the local inflammatory reactions and structural changes observed in this disease. An indirect immunoperoxidase technique is used to examine the tissue samples obtained from the dorsalis pedis artery of affected individuals with twenty monoclonal antibodies. Among these several antigens which are not previously reported in TAO like CD34, CD44 and CD90 were determined in the tissue samples examined. On the other hand, many other antigens like cytokine/chemokine receptors, several enzymes and leukocyte/lymphocyte antigens were lacking giving some clues about the local pathological reactions. We briefly discussed our findings for several critical antigens those first described in the present work, possibly having roles in the development of the disease. Expression of the CD90/CD11c receptor/ligand pair seems to play an important role in mononuclear cell recruitment to the damage site. Vascular invasion of not only tunica intima but also the tunica media in affected vessels is clearly demonstrated using endothelial cell specific antigens

    Alpha B-crystallin Ameliorates Imbalance of Redox Homeostasis, Inflammation and Apoptosis in an Acute Lung Injury Model with Rats

    Get PDF
    Objective: Ischemia-reperfusion (IR) of the aorta is a significant contributor to the development of postoperative acute lung damage after abdominal aortic surgery. The aim of the present study was to examine the effect of alpha B-crystallin, a small heat shock protein (known as HspB5), on lung injury induced by abdominal aortic IR in rats. Methods: Male Sprague-Dawley rats were divided into three groups: control, ischemia-reperfusion (IR, 90 min ischemia and 180 min reperfusion), and alpha B-crystallin +IR. Alpha B-crystallin (50 μg/100 g) was intraperitoneally administered 1 h before IR. Lung tissue samples were obtained for histological and biochemical analyses of oxidative stress and cytokine and apoptosis parameters in plasma, lung tissues, and bronchoalveolar lavage (BAL) fluid. Results: The levels of malondialdehyde, reactive oxygen species, total oxidant status, tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), nuclear factor kappa B (NFKβ), caspase-9 (CASP-9), 8-hydroxy-2'-deoxyguanosine, total antioxidant status, superoxide dismutase, and interleukin-10 levels in lung tissues, plasma, and BAL fluid (p<0.05 versus control) increased in Aortic IR. However, alpha B-crystallin significantly reduced the lung tissue levels of oxidative, inflamatuvar, and apoptotic parameters in the plasma, lung tissues, and BAL fluid (p<0.05 versus aortic IR). Histopathological results showed that alpha B-crystallin ameliorated the morphological changes related to lung injury (p<0.001). Conclusion: Alpha B-crystallin substantially restored disrupted the redox balance, inflammation, and apoptotic parameters in rats exposed to IR. The cytoprotective effect of alpha B-crystallin on redox balance might be attributed to improved lung injury

    Cytotoxic, Genotoxic, and Apoptotic Effects of Nickel Oxide Nanoparticles in Intestinal Epithelial Cells

    No full text
    Objectives: The superior properties of nickel oxide-nanoparticles (NiO-NPs) have led to their wide use in various fields. However, there is little comprehensive knowledge about their toxicity, especially after oral exposure. The toxic effect of NiO-NPs of mean size 15.0 nm was investigated in Caco-2 (human intestinal epithelial) cells as no study has been performed on their intestinal toxicity

    Cupric Oxide Nanoparticles Induce Cellular Toxicity in Liver and Intestine Cell Lines

    No full text
    Purpose: The wide application of cupric oxide nanoparticles (copper (II) oxide, CuO-NPs) in various fields has increased exposure to the kind of active nanomaterials, which can cause negative effects on human and environment health. Although CuO-NPs were reported to be harmful to human, there is still a lack information related to their toxic potentials. In the present study, the toxic potentials of CuO-NPs were evaluated in the liver (HepG2 hepatocarcinoma) and intestine (Caco-2 colorectal adenocarcinoma) cells

    Nickel oxide nanoparticles are highly toxic to SH-SY5Y neuronal cells

    No full text
    Nickel oxide nanoparticles (NiO-NPs) are used in many industrial sectors including printing inks, ceramics and catalysts, and electrical and electronics industry because of their magnetic and optical properties. However, there has been still a serious lack of information about their toxicity at the cellular and molecular levels on nervous system. For that, we aimed to investigate the in vitro toxic potentials of NiO-NPs in neuronal (SH-SY5Y) cells. The particle characterisation, cellular uptake and morphological changes were determined using Transmission Electron Microscopy, dynamic light scattering and Inductively Coupled Plasma-Mass Spectrometry. Then, the cytotoxicity was evaluated by MTT and neutral red uptake assays, the genotoxicity by comet assay, the oxidative potentials by the determination of malondialdehyde, 8-hydroxy deoxyguanosine, protein carbonyl, and glutathione levels with Enzyme-Linked Immune Sorbent Assays, and the apoptotic potentials by Annexin V-FITC apoptosis detection assay with propidium iodide. According to the results, it was observed that NiO-NPs (15.0 nm +/- 4.2 -38.1 nm); (i) were taken up by the cells in concentration dependent manner, (ii) caused 50% inhibition in cell viability at >= 229.34 mu g/mL, (iii) induced some morphological changes, (iv) induced dose dependent DNA damage (3.2-11.0 fold) and apoptosis (80-99%), (v) significantly induced oxidative damage. In conclusion, our results support the hypothesis that NiO-NPs affect human health especially neuronal system negatively and should raise the concern about the safety associated with their applications in consumer products. (C) 2017 Elsevier Ltd. All rights reserved

    Cupric Oxide Nanoparticles Induce Cellular Toxicity in Liver and Intestine Cell Lines

    Full text link
    Purpose: The wide application of cupric oxide nanoparticles (copper (II) oxide, CuO-NPs) in various fields has increased exposure to the kind of active nanomaterials, which can cause negative effects on human and environment health. Although CuO-NPs were reported to be harmful to human, there is still a lack information related to their toxic potentials. In the present study, the toxic potentials of CuO-NPs were evaluated in the liver (HepG2 hepatocarcinoma) and intestine (Caco-2 colorectal adenocarcinoma) cells. Methods: After the characterization of particles, cellular uptake and morphological changes were determined. The potential of cytotoxic, genotoxic, oxidative and apoptotic damage was investigated with several in vitro assays. Results: The average size of the nanoparticles was 34.9 nm, about 2%-5% of the exposure dose was detected in the cells and mainly accumulated in different organelles, causing oxidative stress, cell damages, and death. The IC50 values were 10.90 and 10.04 µg/mL by MTT assay, and 12.19 and 12.06 µg/mL by neutral red uptake (NRU) assay, in HepG2 and Caco-2 cells respectively. Apoptosis assumes to the main cell death pathway; the apoptosis percentages were 52.9% in HepG2 and 45.5% in Caco-2 cells. Comet assay result shows that the highest exposure concentration (20 µg/mL) causes tail intensities about 9.6 and 41.8%, in HepG2 and Caco-2 cells, respectively. Conclusion: CuO-NPs were found to cause significant cytotoxicity, genotoxicity, and oxidative and apoptotic effects in both cell lines. Indeed, CuO-NPs could be dangerous to human health even if their toxic mechanisms should be elucidated with further studies.</jats:p
    corecore