3,894 research outputs found
Higher Curvature Gravity from Entanglement in Conformal Field Theories
By generalizing different recent works to the context of higher curvature
gravity, we provide a unifying framework for three related results: (i) If an
asymptotically AdS spacetime computes the entanglement entropies of ball-shaped
regions in a CFT using a generalized Ryu-Takayanagi formula up to second order
in state deformations around the vacuum, then the spacetime satisfies the
correct gravitational equations of motion up to second order around AdS; (ii)
The holographic dual of entanglement entropy in higher curvature theories of
gravity is given by Wald entropy plus a particular correction term involving
extrinsic curvatures; (iii) CFT relative entropy is dual to gravitational
canonical energy (also in higher curvature theories of gravity). Especially for
the second point, our novel derivation of this previously known statement does
not involve the Euclidean replica trick.Comment: 12 pages, 2 figure
Hearing the grass grow. Emotional and epistemological challenges of practice-near research
This paper discusses the concept of practice-near research in terms of the emotional and epistemological challenges that arise from the researcher coming 'near' enough to other people for psychological processes to ensue. These may give rise in the researcher to confusion, anxiety and doubt about who is who and what is what; but also to the possibility of real emotional and relational depth in the research process. Using illustrations from three social work doctoral research projects undertaken by students at the Tavistock Clinic and the University of East London the paper examines four themes that seem to the author to be central to meaningful practice-near research undertaken in a spirit of true emotional and epistemological open-mindedness: the smell of the real; losing our minds; the inevitability of personal change; and the discovery of complex particulars
Quantum process tomography via completely positive and trace-preserving projection
We present an algorithm for projecting superoperators onto the set of
completely positive, trace-preserving maps. When combined with gradient descent
of a cost function, the procedure results in an algorithm for quantum process
tomography: finding the quantum process that best fits a set of sufficient
observations. We compare the performance of our algorithm to the diluted
iterative algorithm as well as second-order solvers interfaced with the popular
CVX package for MATLAB, and find it to be significantly faster and more
accurate while guaranteeing a physical estimate.Comment: 13pp, 8 fig
Beltway: Getting Around Garbage Collection Gridlock
We present the design and implementation of a new garbage collection framework that significantly generalizes existing copying collectors. The Beltway framework exploits and separates object age and incrementality. It groups objects in one or more increments on queues called belts, collects belts independently, and collects increments on a belt in first-in-first-out order. We show that Beltway configurations, selected by command line options, act and perform the same as semi-space, generational, and older-first collectors, and encompass all previous copying collectors of which we are aware. The increasing reliance on garbage collected languages such as Java requires that the collector perform well. We show that the generality of Beltway enables us to design and implement new collectors that are robust to variations in heap size and improve total execution time over the best generational copying collectors of which we are aware by up to 40%, and on average by 5 to 10%, for small to moderate heap sizes. New garbage collection algorithms are rare, and yet we define not just one, but a new family of collectors that subsumes previous work. This generality enables us to explore a larger design space and build better collectors
Magnetorotational Turbulence and Dynamo in a Collisionless Plasma
We present results from the first 3D kinetic numerical simulation of
magnetorotational turbulence and dynamo, using the local shearing-box model of
a collisionless accretion disc. The kinetic magnetorotational instability grows
from a subthermal magnetic field having zero net flux over the computational
domain to generate self-sustained turbulence and outward angular-momentum
transport. Significant Maxwell and Reynolds stresses are accompanied by
comparable viscous stresses produced by field-aligned ion pressure anisotropy,
which is regulated primarily by the mirror and ion-cyclotron instabilities
through particle trapping and pitch-angle scattering. The latter endow the
plasma with an effective viscosity that is biased with respect to the
magnetic-field direction and spatio-temporally variable. Energy spectra suggest
an Alfv\'en-wave cascade at large scales and a kinetic-Alfv\'en-wave cascade at
small scales, with strong small-scale density fluctuations and weak
non-axisymmetric density waves. Ions undergo non-thermal particle acceleration,
their distribution accurately described by a kappa distribution. These results
have implications for the properties of low-collisionality accretion flows,
such as that near the black hole at the Galactic center.Comment: 6 pages, 6 figures, accepted for publication in Physical Review
Letter
Behavior of self-propelled acetone droplets in a Leidenfrost state on liquid substrates
It is demonstrated that non-coalescent droplets of acetone can be formed on
liquid substrates. The fluid flows around and in an acetone droplet hovering on
water are recorded to shed light on the mechanisms which might lead to
non-coalescence. For sufficiently low impact velocities, droplets undergo a
damped oscillation on the surface of the liquid substrate but at higher
velocities clean bounce-off occurs. Comparisons of experimentally observed
static configurations of floating droplets to predictions from a theoretical
model for a small non-wetting rigid sphere resting on a liquid substrate are
made and a tentative strategy for determining the thickness of the vapor layer
under a small droplet on a liquid is proposed. This strategy is based on the
notion of effective surface tension. The droplets show self-propulsion in
straight line trajectories in a manner which can be ascribed to a Marangoni
effect. Surprisingly, self-propelled droplets can become immersed beneath the
undisturbed water surface. This phenomenon is reasoned to be drag-inducing and
might provide a basis for refining observations in previous work
- …
