3,302 research outputs found

    Evolutionary temperature compensation of carbon fixation in marine phytoplankton

    Get PDF
    The efficiency of carbon sequestration by the biological pump could decline in the coming decades because respiration tends to increase more with temperature than photosynthesis. Despite these differences in the short-term temperature sensitivities of photosynthesis and respiration, it remains unknown whether the long-term impacts of global warming on metabolic rates of phytoplankton can be modulated by evolutionary adaptation. We found that respiration was consistently more temperature dependent than photosynthesis across 18 diverse marine phytoplankton, resulting in universal declines in the rate of carbon fixation with short-term increases in temperature. Long-term experimental evolution under high temperature reversed the short-term stimulation of metabolic rates, resulting in increased rates of carbon fixation. Our findings suggest that thermal adaptation may therefore have an ameliorating impact on the efficiency of phytoplankton as primary mediators of the biological carbon pump

    Transforming European Water Governance? Participation and River Basin Management under the EU Water Framework Directive in 13 Member States

    Get PDF
    The European Union (EU) Water Framework Directive (WFD) requires EU member states to produce and implement river basin management plans, which are to be designed and updated via participatory processes that inform, consult with, and actively involve all interested stakeholders. The assumption of the European Commission is that stakeholder participation, and institutional adaptation and procedural innovation to facilitate it, are essential to the effectiveness of river basin planning and, ultimately, the environmental impact of the Directive. We analyzed official documents and the WFD literature to compare implementation of the Directive in EU member states in the initial WFD planning phase (2000–2009). Examining the development of participatory approaches to river basin management planning, we consider the extent of transformation in EU water governance over the period. Employing a mixed quantitative and qualitative approach, we map the implementation “trajectories” of 13 member states, and then provide a detailed examination of shifts in river basin planning and participation in four member states (Germany, Sweden, Poland and France) to illustrate the diversity of institutional approaches observed. We identify a general tendency towards increased, yet circumscribed, stakeholder participation in river basin management in the member states examined, alongside clear continuities in terms of their respective pre-WFD institutional and procedural arrangements. Overall, the WFD has driven a highly uneven shift to river basin-level planning among the member states, and instigated a range of efforts to institutionalize stakeholder involvement—often through the establishment of advisory groups to bring organized stakeholders into the planning process

    Different carboxyl-rich alicyclic molecules proxy compounds select distinct bacterioplankton for oxidation of dissolved organic matter in the mesopelagic Sargasso Sea

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Liu, S., Parsons, R., Opalk, K., Baetge, N., Giovannoni, S., Bolanos, L. M., Kujawinski, E. B., Longnecker, K., Lu, Y., Halewood, E., & Carlson, C. A. Different carboxyl-rich alicyclic molecules proxy compounds select distinct bacterioplankton for oxidation of dissolved organic matter in the mesopelagic Sargasso Sea. Limnology and Oceanography, (2020), doi:10.1002/lno.11405.Marine dissolved organic matter (DOM) varies in its recalcitrance to rapid microbial degradation. DOM of varying recalcitrance can be exported from the ocean surface to depth by subduction or convective mixing and oxidized over months to decades in deeper seawater. Carboxyl‐rich alicyclic molecules (CRAM) are characterized as a major component of recalcitrant DOM throughout the oceanic water column. The oxidation of CRAM‐like compounds may depend on specific bacterioplankton lineages with oxidative enzymes capable of catabolizing complex molecular structures like long‐chain aliphatics, cyclic alkanes, and carboxylic acids. To investigate the interaction between bacteria and CRAM‐like compounds, we conducted microbial remineralization experiments using several compounds rich in carboxyl groups and/or alicyclic rings, including deoxycholate, humic acid, lignin, and benzoic acid, as proxies for CRAM. Mesopelagic seawater (200 m) from the northwest Sargasso Sea was used as media and inoculum and incubated over 28 d. All amendments demonstrated significant DOC removal (2–11 μmol C L−1) compared to controls. Bacterioplankton abundance increased significantly in the deoxycholate and benzoic acid treatments relative to controls, with fast‐growing Spongiibacteracea, Euryarcheaota, and slow‐growing SAR11 enriched in the deoxycholate treatment and fast‐growing Alteromonas, Euryarcheaota, and Thaumarcheaota enriched in the benzoic acid treatment. In contrast, bacterioplankton grew slower in the lignin and humic acid treatments, with oligotrophic SAR202 becoming significantly enriched in the lignin treatment. Our results indicate that the character of the CRAM proxy compounds resulted in distinct bacterioplankton removal rates of DOM and affected specific lineages of bacterioplankton capable of responding.We thank Z. Landry for the inspiring idea of SAR202 catabolism of CRAM. We thank the University of California, Santa Barbara Marine Science Institute Analytical Laboratory for analyzing inorganic nutrient samples. We thank C. Johnson for her help in FISH sample processing and BATS group in supporting our project. We thank N. K. Rubin‐Saika and R. Padula for their help with amino acid sample preparation. We thank Z. Liu, J. Xue, K. Lu, and Y. Shen for their help with amino acid protocol development and validation. We thank B. Stephens for his help on microscopic image analysis. We thank M. Dasenko and the staff of the CGRB at Oregon State University for amplicon library preparation and DNA sequencing. We are grateful for the help provided by the officers and crews of the R/V Atlantic Explorer. Bermuda Institute of Ocean Sciences (BIOS) provides us tremendous support in terms of facilities and lab space. We thank Bermuda government for its allowance of our water sampling and sample export (export permit number SP160904, issued 07 October 2016 under the Fisheries Act, 1972). This project was supported by Simons Foundation International's BIOS‐SCOPE program

    Role of histone modifications and early termination in pervasive transcription and antisense-mediated gene silencing in yeast

    Get PDF
    Most genomes, including yeast Saccharomyces cerevisiae, are pervasively transcribed producing numerous non-coding RNAs, many of which are unstable and eliminated by nuclear or cytoplasmic surveillance pathways. We previously showed that accumulation of PHO84 antisense RNA (asRNA), in cells lacking the nuclear exosome component Rrp6, is paralleled by repression of sense transcription in a process dependent on the Hda1 histone deacetylase (HDAC) and the H3K4 histone methyl transferase Set1. Here we investigate this process genome-wide and measure the whole transcriptome of various histone modification mutants in a Δrrp6 strain using tiling arrays. We confirm widespread occurrence of potentially antisense-dependent gene regulation and identify three functionally distinct classes of genes that accumulate asRNAs in the absence of Rrp6. These classes differ in whether the genes are silenced by the asRNA and whether the silencing is HDACs and histone methyl transferase-dependent. Among the distinguishing features of asRNAs with regulatory potential, we identify weak early termination by Nrd1/Nab3/Sen1, extension of the asRNA into the open reading frame promoter and dependence of the silencing capacity on Set1 and the HDACs Hda1 and Rpd3 particularly at promoters undergoing extensive chromatin remodelling. Finally, depending on the efficiency of Nrd1/Nab3/Sen1 early termination, asRNA levels are modulated and their capability of silencing is change

    Caenorhabditis elegans AGXT-1 is a mitochondrial and temperature-adapted ortholog of peroxisomal human AGT1: New insights into between-species divergence in glyoxylate metabolism

    Get PDF
    In humans, glyoxylate is an intermediary product of metabolism, whose concentration is finely balanced. Mutations in peroxisomal alanine:glyoxylate aminotransferase (hAGT1) cause primary hyperoxaluria type 1 (PH1), which results in glyoxylate accumulation that is converted to toxic oxalate. In contrast, glyoxylate is used by the nematode Caenorhabditis elegans through a glyoxylate cycle to by-pass the decarboxylation steps of the tricarboxylic acid cycle and thus contributing to energy production and gluconeogenesis from stored lipids. To investigate the differences in glyoxylate metabolism between humans and C. elegans and to determine whether the nematode might be a suitable model for PH1, we have characterized here the predicted nematode ortholog of hAGT1 (AGXT-1) and compared its molecular properties with those of the human enzyme. Both enzymes form active PLP-dependent dimers with high specificity towards alanine and glyoxylate, and display similar three-dimensional structures. Interestingly, AGXT-1 shows 5-fold higher activity towards the alanine/glyoxylate pair than hAGT1. Thermal and chemical stability of AGXT-1 is lower than that of hAGT1, suggesting temperature-adaptation of the nematode enzyme linked to the lower optimal growth temperature of C. elegans. Remarkably, in vivo experiments demonstrate the mitochondrial localization of AGXT-1 in contrast to the peroxisomal compartmentalization of hAGT1. Our results support the view that the different glyoxylate metabolism in the nematode is associated with the divergent molecular properties and subcellular localization of the alanine:glyoxylate aminotransferase activity.This work was supported by the Spanish Ministry of Science and Innovation (CSD2009-00088, BIO2012-34937 and SAF2011-23933), the Junta de Andalucia (P11-CTS-7187), and the Oxalosis and Hyperoxaluria Foundation (OHF2012 to B.C.). A.L.P. acknowledges a Ramon y Cajal research contract (RyC2009-04147) from the Spanish Ministry of Science and Innovation and the University of Granada. N. M-T acknowledges a FPI predoctoral fellowship from the Spanish Ministry of Science and Innovation. A.C.C. and N.T. were supported by the grant IOS-1353845 from the National Science Foundation (NSF). N.T. acknowledges the Tetelman Fellowship for International Research on the Sciences awarded by Yale University.Peer Reviewe

    Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures.

    Get PDF
    Copy number alteration (CNA) profiling of human tumors has revealed recurrent patterns of DNA amplifications and deletions across diverse cancer types. These patterns are suggestive of conserved selection pressures during tumor evolution but cannot be fully explained by known oncogenes and tumor suppressor genes. Using a pan-cancer analysis of CNA data from patient tumors and experimental systems, here we show that principal component analysis-defined CNA signatures are predictive of glycolytic phenotypes, including 18F-fluorodeoxy-glucose (FDG) avidity of patient tumors, and increased proliferation. The primary CNA signature is enriched for p53 mutations and is associated with glycolysis through coordinate amplification of glycolytic genes and other cancer-linked metabolic enzymes. A pan-cancer and cross-species comparison of CNAs highlighted 26 consistently altered DNA regions, containing 11 enzymes in the glycolysis pathway in addition to known cancer-driving genes. Furthermore, exogenous expression of hexokinase and enolase enzymes in an experimental immortalization system altered the subsequent copy number status of the corresponding endogenous loci, supporting the hypothesis that these metabolic genes act as drivers within the conserved CNA amplification regions. Taken together, these results demonstrate that metabolic stress acts as a selective pressure underlying the recurrent CNAs observed in human tumors, and further cast genomic instability as an enabling event in tumorigenesis and metabolic evolution

    The ASTRO-H X-ray Observatory

    Full text link
    The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the high-energy universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV. These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3-2 keV with high spectral resolution of Delta E < 7 eV, enabled by a micro-calorimeter array located in the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5-80 keV, located in the focal plane of multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12 keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the 40-600 keV band. The simultaneous broad bandpass, coupled with high spectral resolution, will enable the pursuit of a wide variety of important science themes.Comment: 22 pages, 17 figures, Proceedings of the SPIE Astronomical Instrumentation "Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray
    corecore